退耕还林与还草对土壤理化性质及分形特征的影响——以宁夏荒漠草原为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Changes in soil physico-chemical properties and related fractal features during conversion of cropland into agroforestry and grassland: A case study of desertified steppe in Ningxia
  • 作者:常海涛 ; 赵娟 ; 刘佳楠 ; 刘任涛 ; 罗雅曦 ; 张静
  • 英文作者:CHANG Hai-tao;ZHAO Juan;LIU Jia-nan;LIU Ren-tao;LUO Ya-xi;ZHANG Jing;Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of Ministry of Education, Ningxia University;College of Agriculture, Ningxia University;
  • 关键词:退耕还林与还草 ; 土壤理化性质 ; 土壤粒径分布 ; 荒漠草原 ; 生态恢复
  • 英文关键词:conversion of cropland into agroforestry and grassland;;soil physical-chemical properties;;soil fractal dimension;;desert steppe;;ecological restoration
  • 中文刊名:草业学报
  • 英文刊名:Acta Prataculturae Sinica
  • 机构:宁夏大学西北退化生态系统恢复与重建教育部重点实验室;宁夏大学农学院;
  • 出版日期:2019-07-20
  • 出版单位:草业学报
  • 年:2019
  • 期:07
  • 基金:宁夏自然科学基金重点项目(2018AAC02004);; 国家自然科学基金项目(41661054;41867005);; 宁夏高等学校科学研究项目(NGY2018007);; 宁夏“生态学”西部一流学科建设项目(NXYLXK2017B06);; 宁夏大学研究生创新项目(GIP2018075)资助
  • 语种:中文;
  • 页:16-27
  • 页数:12
  • CN:62-1105/S
  • ISSN:1004-5759
  • 分类号:S812.2
摘要
以宁夏荒漠草原区为研究对象,分别选取农田、退耕还草地、退耕还林地和天然草地为研究样地,研究了退耕还林与还草对土壤理化性质及分形维数变化特征的影响。结果显示:1)土壤含水量、pH和电导率既受到退耕还林与还草措施的影响,亦受到季节变化的影响。2)农田实施退耕还林与还草工程后,退耕还草地的土壤全氮和有机碳含量最高,其平均含量分别为0.60%和5.93%。3)农田、退耕还草地、退耕还林地和天然草地的土壤黏粉粒含量分别为10.87%、7.47%、8.73%和6.53%;极细沙含量分别为39.07%、35.20%、38.87%和31.00%;细沙含量分别为29.73%、34.93%、32.80%和36.73%;粗沙粒含量分别为20.27%、21.93%、19.60%和25.73%。退耕还林地与天然草地相比土壤粒径在各粒级中均存在显著差异(P<0.05),退耕还草地与天然草地相比仅极细沙和粗沙粒含量存在显著差异(P<0.05)。4)分形维数介于1.87~2.08。土壤分形维数(D)值从高到低表现为农田(2.08)>退耕还林地(2.01)>退耕还草地(1.94)>天然草地(1.87)。5)土壤黏粉粒与土壤电导率达到正相关水平(P<0.05),与土壤碳氮比为显著负相关关系(P<0.01);土壤细沙粒与土壤pH为负相关关系(P<0.05),与电导率为显著负相关关系(P<0.01),而与碳氮比达到显著正相关水平(P<0.01);土壤分形维数与电导率达到显著正相关水平(P<0.01),与碳氮比呈显著负相关关系(P<0.01);而土壤极细沙粒和粗沙粒与各指标之间均无相关性(P>0.05)。6)土壤粒径分布分形维数与细沙粒含量呈线性负相关关系(P<0.01),而与极细沙粒含量呈线性正相关关系(P<0.01),与黏粉粒含量呈对数相关关系(P<0.01),但与粗沙粒含量未表现出相关性(P>0.05)。研究表明,在宁夏荒漠草原区实施退耕还林与还草工程,对土壤理化性质、土壤粒径分布和分形维数特征均产生一定的影响。与天然草地相比,退耕还草地中土壤有机碳和全氮含量显著提高;而退耕还林地中土壤黏粉粒、极细沙粒的分布及分形维数显著上升。说明实施退耕还林与还草工程,有利于农田退耕导致的退化区域土壤质地的改善以及退化生态系统的有效恢复。
        Yanchi County of Ningxia lies in an agro-pasture transitional zone in northern China. The objectives of this study were to investigate the changes in soil properties and related fractal features associated with conversion of cropland to agroforestry or grassland. We selected four categories of site: cropland, cropland under conversion into grassland, cropland under conversion into agroforestry, and natural grassland; the latter taken as the control. The results showed: 1) Soil moisture content, soil pH and soil electrical conductivity values for both cropland under conversion into grassland and cropland under conversion into agroforestry differed from those in natural grassland. 2) After completing conversion of cropland into grassland, the soil nitrogen and organic carbon contents(0.60% and 5.93%, respectively) were the highest among the four sites studied. 3) Soil texture data for the site categories cropland, cropland under conversion into grassland, cropland under conversion into agroforestry, and natural grassland, respectively, were: clay and silt fraction, 10.87%, 7.47%, 8.73% and 6.53%; very fine sand fraction 39.07%, 35.20%, 38.87% and 31.00%; fine sand fraction, 29.73%, 34.93%, 32.80% and 36.73%; and the coarse sand fraction, 20.27%, 21.93%, 19.60% and 25.73%. Compared with natural grassland, the soil fractions in each particle size category differed significantly(P<0.05) at the cropland site under conversion into agroforestry, and there was also a significant difference(P<0.05) in the contents of very fine sand and coarse sand at the site under conversion from cropland into grassland. 4) The soil fractal dimensions of the four sites ranked from high to low: cropland(2.08)>cropland under conversion into agroforestry(2.01)>cropland under conversion into grassland(1.94)>natural grassland(1.87). 5) There was a positive(P<0.05) correlation between soil clay and silt and electrical conductivity, and a negative(P<0.01) correlation with C∶N ratio. There was a negative(P<0.01) correlation between soil fine sand content and soil pH. There was a negative(P<0.01) correlation with soil electrical conductivity, and a positive(P<0.01) correlation with C∶N ratio. There was a significant positive correlation between soil fractal dimension and soil electrical conductivity, and a negative correlation with C∶N ratio(P<0.01). There were no correlations between soil coarse sand, soil very fine sand and the various other soil data(P>0.05). 6) There was a linear negative correlation between the fractal dimension of soil particle size distribution and fine sand content(P<0.01), and a linear positive correlation with the content of very fine sand(P<0.01), and logarithmic correlation with the content of clay(P<0.01), but no correlation with coarse sand content(P>0.05). Overall, the data show that the conversion of cropland into agroforestry or grassland in the desert steppe region of Ningxia has a profound impact on soil physical and chemical properties, soil particle size distribution and fractal dimension properties. Compared with natural grassland, at the cropland site under conversion into grassland the levels of soil organic C and total N were significantly increased; while at the cropland site under conversion into agroforestry, the proportions of soil clay and fine sand, and the soil fractal dimension were significantly increased. These results show that the conversion of cropland into agroforestry or grassland is conducive to improvement of soil texture and ecosystem restoration in areas where there is soil degradation linked to over-cropping.
引文
[1] Song J L.Soil quality characteristics and evaluation on the Loess Plateau.Yangling:Northwest Agriculture and Forestry University,2010.宋娟丽.黄土高原草地土壤质量特征及评价研究.杨凌:西北农林科技大学,2010.
    [2] Zhang B Q,He C S,Burnham M,et al.Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China.Science of the Total Environment,2016,539:436-449.
    [3] Liu J G,Diamond J.China’s environment in a globalizing world.Nature,2005,435:1179-1186.
    [4] Deng L,Shangguan Z P,Rui L I.Effects of the grain-for-green program on soil erosion in China.International Journal of Sediment Research,2012,27(1):120-127.
    [5] Liu D,Chen Y,Cai W W,et al.The contribution of China’s grain to green program to carbon sequestration.Landscape Ecology,2014,29(10):1675-1688.
    [6] Wu X Y,Zhang L,Ding Y R,et al.Effect of land use on soil properties in inter-distributing area of farming and pasturing of Keerqin Sandy Land.Journal of Soil and Water Conservation,2006,20(4):116-119.吴祥云,张黎,丁玉荣,等.科尔沁沙地农牧交错带土地利用方式对土壤特性的影响.水土保持学报,2006,20(4):116-119.
    [7] Chen M L,Zeng Q C,Huang Y M,et al.Effects of the farmland-to-forest grassland conversion program on the soil bacterial community in the Loess Hilly Region.Environmental Science,2018,39(4):1824-1832.陈孟立,曾全超,黄懿梅,等.黄土丘陵区退耕还林还草对土壤细菌群落结构的影响.环境科学,2018,39(4):1824-1832.
    [8] Lu S Y,Peng W X,Song T Q,et al.Soil microbial properties under different grain-for-green patterns in depressions between karst hills.Acta Ecologica Sinica,2012,32(8):2390-2399.鹿士杨,彭晚霞,宋同清,等.喀斯特峰丛洼地不同退耕还林还草模式的土壤微生物特性.生态学报,2012,32(8):2390-2399.
    [9] Cui X L,Lei G,Wang T,et al.Impacts of grain for green project on soil erosion in Luohe River Basin of Northern Shanxi Province,China.Research of Soil Water Conservation,2016,23(5):68-73.崔晓临,雷刚,王涛,等.退耕还林还草工程实施对洛河流域土壤侵蚀的影响.水土保持研究,2016,23(5):68-73.
    [10] Yu Y H,Wu L T Y,A L T T Y.Changes of landscape structure in Horqin Sandy Land based on conversion of cropland to forest or grassland——taking an example of Naiman Banner in Tongliao City.Journal of Inner Mongolia Normal University (Natural Science Edition),2007,36(2):212-216.于艳华,乌兰图雅,阿拉腾图雅.基于退耕还林还草的科尔沁沙地景观结构变化——以通辽市奈曼旗为例.内蒙古师范大学学报(自然科学汉文版),2007,36(2):212-216.
    [11] Dong X.Effects of grain-for-green on soil quality in Huangshui River Basin of Qinghai Province.Bulletin of Soil and Water Conservation,2011,31(5):45-48.董旭.青海省湟水河流域不同退耕还林模式土壤效应.水土保持通报,2011,31(5):45-48.
    [12] Wang D,Fu B J,Chen L D,et al.Fractal analysis on soil particle size distributions under different land-use types:A case study in the Loess Hilly areas of the Loess Plateau,China.Acta Ecologica Sinica,2007,27(7):3081-3089.王德,傅伯杰,陈利顶,等.不同土地利用类型下土壤粒径分形分析:以黄土丘陵沟壑区为例.生态学报,2007,27(7):3081-3089.
    [13] Su Y Z,Zhao H L,Zhao W Z,et al.Fractal features of soil particle size distribution and the implication for indicating desertification.Geoderma,2004,122(1):43-49.
    [14] Song X Y,Li Y J,Li H Y,et al.Fractal characteristics of soil particle-size distributions under different landform and land-use types.Journal of Northwest A&F University (Natural Science Edition),2009,37(9):155-160.宋孝玉,李亚娟,李怀有,等.不同地貌类型及土地利用方式下土壤粒径的分形特征.西北农林科技大学学报(自然科学版),2009,37(9):155-160.
    [15] Chen X C,Guo J Y,Dong Z,et al.Effects of different land use types on fractal characteristics of soil in Ulan buh desert along the Yellow River.Journal of Arid Land Resources and Environment,2015,29(11):169-173.陈新闯,郭建英,董智,等.乌兰布和沙漠沿黄段不同土地利用类型对土壤分形特征的影响.干旱区资源与环境,2015,29(11):169-173.
    [16] Bao S D.Soil and agricultural chemistry analysis.Beijing:China Agriculture Press,1980.鲍士旦.土壤农化分析.北京:中国农业出版社,1980.
    [17] Tyler S W,Wheatcraft S W.Application of fractal mathematics to soil water retention estimation.Science Society of America Journal,1989,53(4):987-996.
    [18] Houérou H N.Restoration and rehabilitation of arid and semiarid Mediterranean ecosystems in north Africa and west Asia:A review.Arid Soil Research & Rehabilitation,2000,14(1):3-14.
    [19] Li X R,Zhang Z S,Tan H J,et al.Ecological restoration and recovery in the wind-blown sand hazard areas of northern China:Relationship between soil water and carrying capacity for vegetation in the Tengger Desert.China Science:Life Science,2014,44(3):257-266.李新荣,张志山,谭会娟,等.我国北方风沙危害区生态重建与恢复:腾格里沙漠土壤水分与植被承载力的探讨.中国科学:生命科学,2014,44(3):257-266.
    [20] Yang X Y,Shao T J,Zhao J B.Soil moisture content in sand layers of Shapotou area in Tengger Desert during dry season.Bulletin of Soil and Water Conservation,2016,36(2):88-92.杨晓玉,邵天杰,赵景波.腾格里沙漠沙坡头地区旱季沙层含水量.水土保持通报,2016,36(2):88-92.
    [21] Jiang Q,Li S B,Pan Z B,et al.Evaluations on construction of artificial Caragana intermedia to improved effects of degenerated sand land.Journal of Soil & Water Conservation,2006,(4):23-27.蒋齐,李生宝,潘占兵,等.人工柠条灌木林营造对退化沙地改良效果的评价.水土保持学报,2006,(4):23-27.
    [22] Zhang W J.Studies on water dynamic and the regional desertification characteristics in Yanchi Sand Land.Beijing:Beijing Forestry University,2004.
    [23] Liu S M,Qu X Y,Zhang H S,et al.Effects of tillage managements in wheat-maize crop system on soil physical properties in summer maize season.Acta Agriculturae Boreali-Sinica,2013,28(6):226-232.刘淑梅,曲晓燕,张洪生,等.小麦、玉米轮作制度下耕作方式对夏玉米农田土壤物理性状的影响.华北农学报,2013,28(6):226-232.
    [24] Su Y Z,Zhao H L.Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land,north China.Ecological Engineering,2003,20(3):223-235.
    [25] Su Y Z,Zhang T H,Li Y L,et al.Changes in soil properties after establishment of Artemisia halodendron and Caragana microphylla on shifting sand dunes in semiarid Horqin Sandy Land,northern China.Environmental Management,2005,36(2):272-281.
    [26] Sun Y R.Experimental survey for the effects of soil water content and soil salinity on soil electrical conductivity.Journal of China Agricultural University,2000,5(4):39-41.孙宇瑞.土壤含水率和盐分对土壤电导率的影响.中国农业大学学报,2000,5(4):39-41.
    [27] Han Y,Ma F Y,Xie G L,et al.Spatial heterogeneity of soil electrical conductivity in a mixed plantation of the Yellow River Delta saline land.Science of Soil and Water Conservation,2014,12(5):84-89.韩跃,马风云,解国磊,等.黄河三角洲盐碱地混交林土壤电导率的空间异质性.中国水土保持科学,2014,12(5):84-89.
    [28] Yuan Q X,Zhu D W,Wu Y J.Coupling effects of temperature,moisture,and nitrogen application on greenhouse soil pH and EC.Chinese Journal of Applied Ecology,2009,20(5):1112-1117.袁巧霞,朱端卫,武雅娟.温度、水分和施氮量对温室土壤pH及电导率的耦合作用.应用生态学报,2009,20(5):1112-1117.
    [29] Zhao J X.Soil acidity and alkalinity and plant growth.Inner Mongolia Agricultural Science and Technology,2003,(6):33.赵军霞.土壤酸碱性与植物的生长.内蒙古农业科技,2003,(6):33.
    [30] Zhou Z H,Wang C K,Zhang Q Z.The effect of land use change on soil carbon,nitrogen,and phosphorus contents and their stoichiometry in temperate sapling stands in northeastern China.Acta Ecologica Sinica,2015,35(20):6694-6702.周正虎,王传宽,张全智.土地利用变化对东北温带幼龄林土壤碳氮磷含量及其化学计量特征的影响.生态学报,2015,35(20):6694-6702.
    [31] Islam K R,Weil R R.Land use effects on soil quality in a tropical forest ecosystem of Bangladesh.Agriculture Ecosystems & Environment,2000,79(1):9-16.
    [32] Liu R T,Zhao H L,Zhao X Y.Effects of different afforestation types on soil faunal diversity in Horqin Sand Land.Chinese Journal of Applied Ecology,2012,23(4):1104-1110.刘任涛,赵哈林,赵学勇.科尔沁沙地不同造林类型对土壤动物多样性的影响.应用生态学报,2012,23(4):1104-1110.
    [33] Guo Y,Zhao H,Zuo X,et al.Biological soil crust development and its topsoil properties in the process of dune stabilization,Inner Mongolia,China.Environmental Geology,2008,54(3):653-662.
    [34] Kaur B,Gupta S R,Singh G.Soil carbon microbial activity and nitrogen availability in agroforestry systems on moderately alkali soils in northern India.Applied Soil Ecology,2000,15(3):283-294.
    [35] Qi Y B,Huang B,Gu Z Q,et al.Spatial and temporal variation of C/N ratios of agricultural soils in typical area of Yangtze Delta Region and its environmental significance.Bulletin of Mineralogy,Petrology and Geochemistry,2008,(1):50-56.齐雁冰,黄标,顾志权,等.长江三角洲典型区农田土壤碳氮比值的演变趋势及其环境意义.矿物岩石地球化学通报,2008,(1):50-56.
    [36] Zhao H L,Zhou R L,Su Y Z,et al.Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia.Ecological Engineering,2007,31(1):1-8.
    [37] Peng W D,Zhang X H,Zhu J N,et al.Effects of different planting density of Caragana korshinskii Kom on soil moisture and forage grass composition in returning farmland to forestland.Ningxia Agriculture and Forestry Science and Technology,2009,(2):15-17.彭文栋,张秀红,朱建宁,等.退耕还林地柠条不同种植密度对土壤水分及牧草组成的影响研究.宁夏农林科技,2009,(2):15-17.
    [38] Cang M L,Mu L,Wang X D,et al.Spatial distribution of soil particle size and its correlation with soil moisture in Caragana tibetica community.Acta Ecologiae Animalis Domastici,2014,35(9):23-27.仓木拉,木兰,王晓栋,等.西藏锦鸡儿群落表层土壤粒径空间分布特征及其与土壤水分相关性分析.家畜生态学报,2014,35(9):23-27.
    [39] Wei M H,Lin H L.Soil particle size distribution and its fractal dimension among degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River,Qinghai-Tibetan Plateau,China.Chinese Journal of Applied Ecology,2014,25(3):679-686.魏茂宏,林慧龙.江河源区高寒草甸退化序列土壤颗粒分布及其分形维数.应用生态学报,2014,25(3):679-686.
    [40] Gui D W,Lei J Q,Zeng F J,et al.Fractal dimension of particle size distribution and its affecting factors in oasis farmland soils in southern marginal zones of Tarim Basin.Chinese Journal of Eco-Agriculture,2010,18(4):730-735.桂东伟,雷加强,曾凡江,等.塔里木盆地南缘绿洲农田土壤颗粒分布分形特征及影响因素研究.中国生态农业学报,2010,18(4):730-735.
    [41] Yu J,Lü X,Bin M,et al.Fractal features of soil particle size distribution in newly formed wetlands in the Yellow River Delta.Scientific Reports,2015,5:10540.
    [42] Bai E,Boutton T W,Liu F,et al.Spatial variation of soil δ13C and its relation to carbon input and soil texture in a subtropical lowland woodland.Soil Biology & Biochemistry,2012,44(1):102-112.
    [43] Jiang K,Qin H L,Lu Y,et al.Fractal dimension of particle-size distribution for soils derived from different parent materials in Guangdong Province.Journal of Soil and Water Conservation,2016,30(6):319-324.姜坤,秦海龙,卢瑛,等.广东省不同母质发育土壤颗粒分布的分形维数特征.水土保持学报,2016,30(6):319-324.
    [44] Liu Y,Chen B,Yang X B,et al.Fractal characteristics of soil particles of typical forest in North Mountain of Hebei Province.Journal of Soil and Water Conservation,2012,26(3):159-163.刘阳,陈波,杨新兵,等.冀北山地典型森林土壤颗粒分形特征.水土保持学报,2012,26(3):159-163.
    [45] Gao G L,Ding G D,Zhao Y Y,et al.Characterization of soil particle size distribution with a fractal model in the Desertified Regions of Northern China.Acta Geophysica,2016,64(1):1-14.