复合菌剂对玉米秸秆的降解及土壤生态特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Compound Microbial Agent on Corn Straw Degradation and Soil Ecological Properties
  • 作者:魏蔚 ; 宋时丽 ; 吴昊 ; 张丽 ; 管永祥 ; 李运生 ; 戴传超
  • 英文作者:WEI Wei;SONG Shi-li;WU Hao;ZHANG Li;GUAN Yong-xiang;LI Yun-sheng;DAI Chuan-chao;College of Life Sciences, Nanjing Normal University;The Station of Farmland Quality and Agricultural Environment Protection;The General Station of Jiangsu Agricultural Technology Extension;Yucheng Comprehensive Experimental Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;
  • 关键词:秸秆降解 ; 复合菌剂 ; 小麦生长 ; 土壤生态影响
  • 英文关键词:Corn straw degradation;;Endophyte inoculant;;Wheat growth;;Soil ecological property
  • 中文刊名:土壤通报
  • 英文刊名:Chinese Journal of Soil Science
  • 机构:南京师范大学生命科学学院;江苏省耕地质量与农业环境保护站;江苏省农业技术推广总站;中国科学院地理研究所禹城试验站;
  • 出版日期:2019-04-06
  • 出版单位:土壤通报
  • 年:2019
  • 期:02
  • 基金:江苏省农业三新工程项目(SXGC[2016]277)资助
  • 语种:中文;
  • 页:77-86
  • 页数:10
  • CN:21-1172/S
  • ISSN:0564-3945
  • 分类号:S141.4;S153;S154
摘要
还田玉米秸秆降解过程中施加含有植物内生真菌的复合菌剂,在盆栽条件下研究了该菌剂对还田秸秆的降解作用,对土壤生态以及后季作物小麦生长的影响。结果表明:添加复合菌剂能够促进玉米秸秆的降解,在前30 d时效果最显著,尤其是木质素的降解,两种复合菌剂处理组木质素降解率分别比市购秸秆腐熟剂高117.36%和242.70%;施用菌剂会显著增加小麦生长早期土壤蔗糖酶、脲酶和纤维素酶的活性,增加小麦生长早期土壤微生物数量;改善土壤理化性质,提高小麦成熟后土壤中的全氮、全钾、碱解氮和速效钾的含量;显著改善小麦生长状况,小麦返青拔节期叶片叶绿素含量显著增加,收获小麦单株生物量和单株产量也有所增加。
        The effects of endophyte inoculant application on the corn straw degradation, soil ecological properties, and wheat growth were investigated in pot experiments. The results showed that the addition of the endophyte inoculant accelerated the corn straw degradation in the early stage(0-30 d). Especially, the degradation rate of the lignin with the additions of two kinds of endophyte inoculants was 117.36% and 242.70% higher than that with the addition of the microbial inoculant from the market. The application of the endophyte inoculant enhanced soil enzyme activities, such as invertase activity, urease activity and cellulase activity. The application of the endophyte inoculant also increased the number of soil microorganisms during the early stage of wheat growth and improved soil physical and chemical properties, especially the contents of soil total nitrogen, total potassium, alkali hydrolysable nitrogen and available potassium. In addition, the application of endophyte inoculant stimulated the wheat growth well, increased the contents of chlorophyll of potting wheat leaf during the elongation stage and enhanced the biomass and yield of the wheat during the maturing stage.
引文
[1]薄国栋,申国明,张继光,等.秸秆还田对植烟土壤养分及真菌群落多样性的影响[J].土壤通报, 2016, 47(1):137–142.
    [2]路怡青,朱安宁,张佳宝,等.免耕和秸秆还田对土壤酶活性和微生物群落的影响[J].土壤通报, 2014(1):85-90.
    [3]林蔚刚,吴俊江,董德健,等.初期保护性耕作方式下秸秆还田量对土壤物理特性及大豆玉米产量的影响[J].大豆科学, 2010, 29(5):760-766.
    [4]魏蔚,李运生,戴传超,等.不同耕作和施肥措施对潮土生物学特性的影响[J].土壤通报, 2011, 42(3):692-697.
    [5]刘威,黄丽,鲁剑巍,等.两种保护性耕作对土壤养分、结构和产量的影响[J].土壤通报, 2015, 46(2):420-427.
    [6]齐永志.玉米秸秆还田的微生态效应及对小麦纹枯病的适应性控制技术[D].保定:河北农业大学, 2014.
    [7] BURESH R, SAYRE K. Implications of straw removal on soil fertility and sustainability[J]. Expert Consultation on Biofuels, 2007:33-35.
    [8] BUTCHA G, SEBASTIEN B, CHRISROPH M, et al. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines[J]. Environmental Pollution, 2009, 157:1554-1558.
    [9]蔡丽君,张敬涛,盖志佳,等.免耕条件下秸秆还田量对土壤酶活性的影响[J].土壤通报, 2015, 46(5):1127-1132.
    [10] WEI H, MING H. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition[J]. Bio-resource Technology, 2010, 101(10):3724-3731.
    [11] SANCHEZ C. Lignocellulosic residues:biodegradation and bioconve rsion by fungi[J]. Biotechnology Advances, 2009, 27(2):185-194.
    [12] LOPEZ M J, VARGAS-GARCIA M D C, SUAREZ-ESTRELLA F,et al. Biodelignification and humification of horticultural plant residues by fungi[J]. International Biodeterioration&Biodegradation,2006, 57(1):24-30.
    [13] GAIND S, NAIN L. Chemical and biological properties of wheat soil in response to paddy straw incorporation and its biodegradation by fungal inoculants[J]. Biodegradation, 2007, 18(4):495-503.
    [14]刘丹丹,何璐,赵金辉,等.新型复合生防菌剂对水稻苗床土壤酶活性的影响[J].土壤通报, 2015, 46(4):895-898.
    [15] STIERLE A, STIERLE D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew[J]. Science, 1993,260(5105):214-216.
    [16] BULLA L M C, POLONIO J C, PORTELA-CASTRO A L D B, et al.Activity of the endophytic fungi Phlebia sp. and Paecilomyces formosus in decolourisation and the reduction of reactive dyes’cytotoxicity in fish erythrocytes[J]. Environmental Monitoring&Assessment, 2017, 189(2):88.
    [17] GHIMIRE S R, HYDE K D, Varma A, et al. Fungal endophytes[M].Plant Surface Microbiology. 2004.
    [18] OSES R, VALENZUELA S, FREER J, SANFUENTES E, et al.Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay[J]. Fungal Divers, 2008, 33:77-86.
    [19] CHEN Y, PENG Y, DAI C C, JU Q. Biodegradation of 4-hydroxyben zoic acid by Phomopsis liquidambari[J]. Applied Soil Ecology, 2011,51:102-110.
    [20]谢星光,戴传超,苏春沦,等.内生真菌对花生残茬腐解及土壤酚酸含量的影响[J].生态学报, 2015, 35(11):3836-3845.
    [21] YANG B, MA H Y, WANG X M, et al. Improvement of nitrogen accumulation and metabolism in rice(Oryza sativa L.)by the endophyte Phomopsis liquidambari[J]. Plant Physiology and Biochemistry, 2014, 82:172-182.
    [22]姜宝娟,戴传超,陶杰,等.可利用纤维素产油脂的意杨内生真菌的筛选与发酵条件研究[J].林产化学与工业, 2009, 29(4):27-32.
    [23] JIANG X, GENG A, HE N, et al. New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production[J]. Journal of Bioscience&Bioengineering, 2011, 111(2):121-127.
    [24] XU S, ZHOU S, MA S, et al. Manipulation of nitrogen leaching from tea field soil using a Trichoderma viride biofertilizer[J]. Environ Sci Pollut Res Int, 2017(5):1-10.
    [25] JOHNR P, TYAGIR D, PREVEST D, et al. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean[J]. Crop Protection, 2010, 29(12):1452-1459.
    [26]黄运红,李长生,龙中儿.蜂房芽孢杆菌木聚糖酶的活性[J].江西师范大学学报, 2003, 27(4):313-315.
    [27]王毅,刘云国,习兴梅,等.枯草芽孢杆菌降解木质纤维素能力及产酶研究.微生物学杂志, 2008, 28(4):1-6.
    [28]王少昆,赵学勇,黄文达,等.科尔沁沙质草地纤维素分解菌的筛选、鉴定及其分解能力[J].中国沙漠, 2015, 35(6):1584-1591.
    [29]邓振山,赵龙飞,张薇薇,等.银杏内生真菌的分离及其对苹果腐烂病病原菌的拮抗作用[J].西北植物学报, 2009, 29(3):0608-0613.
    [30]魏林,梁志怀,罗赫荣.哈茨木霉T2-16发酵产物对水稻种子活力的影响[J].种子, 2005, 24(11):4-6.
    [31]王金主,王元秀,李峰,等.玉米秸秆中纤维素、半纤维素和木质素的测定[J].山东食品发酵, 2010(3):44-47.
    [32]苏春沦,王宏伟,谢星光,等.内生真菌与苍术粉对连作花生根际微生物区系和微量元素的影响[J].生态学报, 2016, 36(7):2052-2065.
    [33] SUN L, XUN W, HUANG T, et al. Alteration of the soil bacterial community during parent material maturation driven by different fertilization treatments[J]. Soil Biology&Biochemistry, 2016, 96:207-215.
    [34] GIL S V, MERILES J, CONFORTO C, et al. Field assessment of soil biological and chemical quality in response to crop management practices[J]. World Journal of Microbiology&Biotechnology, 2009, 25(3):439-448.
    [35]向芬,李维,刘红艳,等.茶树叶绿素测定方法的比较研究[J].茶叶通讯, 2016, 43(4):37-40.
    [36] ITTHAYAKOM P, KEVIN D H, ERIC H C M, et al. Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes[J]. Fungal Diversity, 2010, 41:89-99.
    [37] ALVEAR M, ROSAS A. Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile[J]. Soil&Tillage Research, 2005, 85:195-202.
    [38]于建光,常志州,黄红英,等.秸秆腐熟剂对土壤微生物及养分的影响[J].农业环境科学学报, 2010, 29(3):563-570.
    [39]解媛媛,谷洁,高华.微生物菌剂酶制剂化肥不同配比对秸秆还田后土壤酶活性的影响[J].水土保持研究, 2010, 17(2):233-238.
    [40] GAIND S, NAIN L. Chemical and biological properties of wheat soil in response to paddy straw incorporation and its biodegradation by fungal inoculants[J]. Biodegradation, 2007, 18(4):495-503.
    [41] YUAN Z L, DAI C C, LI X, et al. Extensive host range of an endophytic fungus affects the growth and physiological functions in rice(Oryza sativa L.). Symbiosis. 2007, 43(1):21-28.
    [42]高绘菊,付信芝,董法宝,等.桑树内生拮抗细菌枯草芽孢杆菌L144对植物生长及营养代谢的影响[J].蚕业科学, 2010, 36(2):214-220.