用户名: 密码: 验证码:
基于Ecopath模型的崂山湾人工鱼礁区生态系统结构和功能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Ecopath evaluation of system structure and function for the Laoshan Bay artificial reef zone ecosystem
  • 作者:刘鸿雁 ; 杨超杰 ; 张沛东 ; 李文涛 ; 张秀梅
  • 英文作者:LIU Hongyan;YANG Chaojie;ZHANG Peidong;LI Wentao;ZHANG Xiumei;Key Laboratory of Mariculture, Ministry of Education, Ocean University of China;Function Laboratory for Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology;
  • 关键词:崂山湾 ; 人工鱼礁 ; Ecopath模型 ; 生态容量 ; 食物网
  • 英文关键词:Laoshan Bay;;artificial reef;;Ecopath model;;ecological capacity;;food web
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国海洋大学海水养殖教育部重点实验室;青岛海洋科学与技术国家实验室海洋渔业科学与食物产出过程功能实验室;
  • 出版日期:2019-03-21 09:04
  • 出版单位:生态学报
  • 年:2019
  • 期:11
  • 基金:国家自然科学基金项目(31172447,31572227);; 国家海洋公益性行业科研专项(201405010);; 青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2015ASKJ01)
  • 语种:中文;
  • 页:133-143
  • 页数:11
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S953.1
摘要
基于2014—2016年青岛崂山湾人工鱼礁区的生物资源调查数据,利用Ecopath with Ecosim(EwE)软件构建崂山湾人工鱼礁区生态系统生态通道模型(Ecopath),系统分析了崂山湾人工鱼礁区生态系统的能量流动规律和结构特征,估算了栉孔扇贝的养殖容量。该模型由17个功能组组成,基本涵盖了崂山湾人工鱼礁区生态系统能量流动的主要过程。生态网络分析表明,生态系统各功能组的营养级范围为1.0—4.255,星康吉鳗占据了营养级的最高层。能量流动主要有5级,各营养级平均能量传递效率为10.8%,其中来自初级生产者的能量效率为9.8%,来自碎屑的传递效率为10.9%;系统总流量为14256.510 t km~(-2) a~(-1),其中68%的能量来自碎屑供给;系统的总初级生产量/总呼吸量为1.127,系统联结指数为0.293,杂食指数为0.333,表明崂山湾人工鱼礁区生态系统成熟度较高,食物网结构较复杂,系统内部稳定性较高。关键种指数分析结果显示,许氏平鲉具有较高的关键指数和相对总影响,表明其可能在当前生态系统中扮演重要的生态角色。吊笼养殖栉孔扇贝生态容纳量为189.679 t/km~2,在维持生态系统平衡和稳定的前提下,当前现存量最大可增加18.55%。
        Based on an investigation in the Laoshan Bay artificial reef zone from 2014—2016, a trophic model of the Laoshan Bay artificial reef ecosystem was constructed using Ecopath with Ecosim software to analyze the energy flow pattern and attributes of the ecosystem, estimating the carrying capacity of Chlamys farreri. The model included 17 functional groups, covering nearly all the main processes of the energy flow in Laoshan Bay artificial reef ecosystem. Network analysis showed that the trophic level of the functional groups varied from 1.0—4.255, and Conger myriaster occupied the highest trophic level. Five discrete trophic levels were found, and the mean trophic transfer efficiency was 10.8%, with a mean transfer efficiency of 10.9% from detritus and 9.8% from the primary producers within the ecosystem. The total system throughput was estimated to be 14256.510 t km~(-2) y~(-1), with 68% originated from detritus. The ratio of total primary productivity to total respiration of the system, the connectivity index, and the omnivory index were 1.127, 0.293, and 0.333, respectively, showing an ecosystem with a high maturity, a complex food web, and a high internal stability. The key species index analysis showed that Sebastes schlegelii had a high keystone index and relative overall effect, indicating that it may play an important ecological role in the current ecosystem. The ecological capacity of the ecosystem for Chlamys farreri culture is 189.679 t/km~2; the current stock may increase by 18.55% of the current level.
引文
[1] Odum E P.The strategy of ecosystem development.Science,1969,164(3877):262- 270.
    [2] 仝龄,唐启升,Pauly D.渤海生态通道模型初探(英文).应用生态学报,2000,11(3):435- 440.
    [3] Polovina J J.Model of a coral reef ecosystem.Coral Reefs,1984,3(1):1- 11.
    [4] Christensen V,Pauly D.ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics.Ecological Modelling,1992,61(3/4):169- 185.
    [5] Walters C,Christensen V,Pauly D.Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments.Reviews in Fish Biology and Fisheries,1997,7(2):139- 172.
    [6] Walters C,Pauly D,Christensen V,Kitchell J F.Representing density dependent consequences of life history strategies in aquatic ecosystems:EcoSim II.Ecosystems,2000,3(1):70- 83.
    [7] Geers T M,Pikitch E K,Frisk M G.An original model of the northern Gulf of Mexico using Ecopath with Ecosim and its implications for the effects of fishing on ecosystem structure and maturity.Deep Sea Research Part II:Topical Studies in Oceanography,2016,129:319- 331.
    [8] Lin H J,Shao K T,Jan R Q,Hsieh H L,Chen C P,Hsieh L Y,Hsiao Y T.A trophic model for the Danshuei River Estuary,a hypoxic estuary in northern Taiwan.Marine Pollution Bulletin,2007,54(11):1789- 1800.
    [9] Heymans J J,Shannon L J,Jarre A.Changes in the northern Benguela ecosystem over three decades:1970s,1980s,and 1990s.Ecological Modelling,2004,172(2):175- 195.
    [10] Morales-Zárate M V,Arreguin-Sánchez F,López-Martinez J,Lluch-Cota S E.Ecosystem trophic structure and energy flux in the Northern Gulf of California,México.Ecological Modelling,2004,174(4):331- 345.
    [11] Pinkerton M H,Lundquist C J,Duffy C A J,Freeman D J.Trophic modelling of a New Zealand rocky reef ecosystem using simultaneous adjustment of diet,biomass and energetic parameters.Journal of Experimental Marine Biology and Ecology,2008,367(2):189- 203.
    [12] 李永刚,汪振华,章守宇.嵊泗人工鱼礁海区生态系统能量流动模型初探.海洋渔业,2007,29(3):226- 234.
    [13] 吴忠鑫,张秀梅,张磊,佟飞,刘洪军.基于Ecopath模型的荣成俚岛人工鱼礁区生态系统结构和功能评价.应用生态学报,2012,23(10):2878- 2886.
    [14] 许祯行,陈勇,田涛,刘永虎,尹增强,刘汉超.基于Ecopath模型的獐子岛人工鱼礁海域生态系统结构和功能变化.大连海洋大学学报,2016,31(1):85- 94.
    [15] 张明亮,冷悦山,吕振波,李凡,王田田,张爱波.莱州湾三疣梭子蟹生态容量估算.海洋渔业,2013,35(3):303- 308.
    [16] 林群,王俊,李忠义,吴强.黄河口邻近海域生态系统能量流动与三疣梭子蟹增殖容量估算.应用生态学报,2015,26(11):3523- 3531.
    [17] 王腾,张贺,张虎,张硕.基于营养通道模型的海州湾中国明对虾生态容纳量.中国水产科学,2016,23(4):965- 975.
    [18] 林群,李显森,李忠义,金显仕.基于Ecopath模型的莱州湾中国对虾增殖生态容量.应用生态学报,2013,24(4):1131- 1140.
    [19] 杨超杰,吴忠鑫,刘鸿雁,张沛东,李文涛,曾晓起,张秀梅.基于Ecopath模型估算莱州湾朱旺人工鱼礁区日本蟳、脉红螺捕捞策略和刺参增殖生态容量.中国海洋大学学报,2016,46(11):168- 177.
    [20] 袁伟,林群,王俊,孙坚强,陈瑞盛.崂山湾中国对虾(Fenneropenaeus chinensis)增殖放流的效果评价.渔业科学进展,2015,36(4):2 7- 34.
    [21] 梅春,任一平,徐宾铎,范延琛.崂山湾日本对虾增殖放流效果的初步研究.中国海洋大学学报,2010,40(09):45- 50.
    [22] 卢晓,董天威,涂忠,信敬福,王云中,王四杰,王培亮.山东省三疣梭子蟹增殖放流回顾与思考[J].渔业信息与战略,2018,33(2):104- 108.
    [23] 郭书新,高东奎,张秀梅,李文涛,张沛东.青岛崂山青山湾人工鱼礁区及附近海域鱼卵仔稚鱼种类组成与数量分布.应用生态学报,2017,28(6):1984- 1992.
    [24] 刘鸿雁,杨超杰,张沛东,李文涛,杨晓龙,张秀梅.青岛崂山湾人工鱼礁区底层游泳动物群落结构特征.生物多样性,2016,24(8):896- 906.
    [25] 王欣,盛化香,唐衍力,黄六一,万荣.崂山湾人工鱼礁区浮游植物群落结构与环境因子的关系.渔业科学进展,2014,35(4):7- 12.
    [26] 盛化香.崂山湾人工鱼礁区底栖大型海藻群落的季节性和区域性变化[D].青岛:中国海洋大学,2012.
    [27] Pauly D,Christensen V,Walters C.Ecopath,Ecosim,and Ecospace as tools for evaluating ecosystem impact of fisheries.ICES Journal of Marine Science,2000,57(3):697- 706.
    [28] Scheffer M.Ecology of shallow lakes.London:Chapman &Hall,1998.
    [29] 吴忠鑫.山东俚岛人工鱼礁区生态效果初步评价[D].青岛:中国海洋大学,2015.
    [30] 刘其根,王钰博,陈立侨,陈勇,刘国栋,陈马康,何光喜,陈来生,洪荣华.保水渔业对千岛湖食物网结构及其相互作用的影响.生态学报,2010,30(10):2774- 2783.
    [31] 梁成菊.青岛近海有机碳的分布特征及影响因素[D].青岛:中国海洋大学,2008.
    [32] 张宝琳,孙道元,吴耀泉.灵山岛浅海岩礁区刺参(Apostichopus japonjcus)食性初步分析.海洋科学,1995,(3):11- 13.
    [33] 杨纪明.渤海无脊椎动物的食性和营养级研究.现代渔业信息,2001,16(9):8- 16.
    [34] Jiang H,Cheng H Q,Xu H G,Arreguín-Sánchez F,Zetina-Rejón M J,Del Monte Luna P.Trophic controls of jellyfish blooms and links with fisheries in the East China Sea.Ecological Modelling,2008,212(3/4):492- 503.
    [35] Christensen V,Walters C J,Pauly D.Ecopath with Ecosim:a user′s guide.Vancouver,Columbia:Fisheries Centre,University of British Columbia,2005,154.
    [36] Christensen V,Walters C J.Ecopath with Ecosim:methods,capabilities and limitations.Ecological Modelling,2004,172(2/4):109- 139.
    [37] Power M E,Tilman D,Estes J A,Menge B A,Bond W J,Mills L S,Daily G,Castilla J C,Lubchenco J,Paine R T.Challenges in the quest for keystones.BioScience,1996,46(8):609- 620.
    [38] Libralato S,Christensen V,Pauly D.A method for identifying keystone species in food web models.Ecological Modelling,2006,195(3/4):153- 171.
    [39] 唐启升.关于容纳量及其研究.海洋水产研究,1996,17(2):1- 6.
    [40] 赵静,章守宇,许敏.枸杞海藻场生态系统能量流动模型初探.上海海洋大学学报,2010,19(1):98- 104.
    [41] Okey T A,Banks S,Born A F,Bustamante R H,Calvopiňa M,Edgar G J,Espinoza E,Fariňa J M,Garske L E,Reck G K,Salazar S,Shepherd S,Toral-Granda V,Wallem P.A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies.Ecological Modelling,2004,172(2/4):383- 401.
    [42] Morissette L.Complexity,cost and quality of ecosystem models and their impact on resilience:A Comparative Analysis,with Emphasis on Marine Mammals and the Gulf of St.Lawrence[D].Vancouver:University of British Columbia,2007.
    [43] Pauly D,Christensen V.Primary production required to sustain global fisheries.Nature,1995,374(6519):255- 257.
    [44] 张波,袁伟,王俊.崂山湾春季鱼类群落的摄食生态及其主要种类.中国水产科学,2015,22(4):820- 827.
    [45] Lindeman R L.The trophic-dynamic aspect of ecology.Ecology,1942,23(4):399- 417.
    [46] 张继红,方建光,王巍.浅海养殖滤食性贝类生态容量的研究进展.中国水产科学,2009,16(4):626- 632.
    [47] 许祯行.基于Ecopath模型的獐子岛人工鱼礁区生态系统功能评价[D].大连:大连海洋大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700