新疆天山森林公园土壤螨类群落多样性与环境因子的相关性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Correlation between the diversity of soil mite communities and environmental factors in Tianshan Forest Park in Xinjiang, China
  • 作者:排孜丽耶·合力力 ; 吾玛尔·阿布力孜 ; 阿丽亚·司地克
  • 英文作者:Pazliya HELIL;Omar ABLIZ;Aliya SIDIK;College of Life Sciences and Technology, Xinjiang University;
  • 关键词:天山森林公园 ; 土壤螨类 ; 群落多样性 ; 环境因子 ; RDA分析
  • 英文关键词:Tianshan Forest Park;;soil mites;;community diversity;;environmental factors;;redundancy analysis
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:新疆大学生命科学与技术学院;
  • 出版日期:2018-12-21 16:40
  • 出版单位:生态学报
  • 年:2019
  • 期:05
  • 基金:新疆维吾尔自治区研究生科研创新项目(XJGRI201617);; 国家自然科学基金项目(31560588,41361052,40961018)
  • 语种:中文;
  • 页:159-172
  • 页数:14
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S714.3
摘要
为探讨西北干旱区森林土壤螨类群落和环境因子的相互关系,于2014年对新疆天山森林公园七种不同生境进行土壤螨类群落调查与环境因子测定,并采用除趋势对应分析法(DCA)和冗余分析法(RDA)对土壤螨类群落结构和多样性特征及其与环境因子之间的关系进行相关分析。结果表明,共捕获土壤螨类成体标本24399只,隶属4目56科108属(包括9个中国新记录属),其中小甲螨属Oribatella为优势类群。方差分析表明,在7种不同生境之间土壤螨类群落多样性指标均存在显著差异(P<0.05),Shannon-Wiener多样性指数(H)依次为针叶林>苗圃林>阔叶林>灌木林>针阔混交林>草甸草原>林中草地。RDA分析结果表明,第一主轴和第二主轴分别解释了土壤螨类主要群落总变量的34.8%和27.3%,所有环境因子共解释了土壤螨类群落物种组成变异的82.1%。蒙特卡罗置换检验显示,十种环境因子与全部排序轴(F=7.355,P=0.002)均存在极显著的相关性。研究表明,海拔、土壤含水量和有机质含量对螨类群落结构和多样性的影响显著。
        To explore the relationships between the diversity of forest soil mite communities and environmental factors in the arid area of northwest China, soil mite communities and environmental factors in 7 different habitats in Tianshan Forest Park of Xinjiang were measured in 2014. The relationships between the diversity of soil mite communities and 10 environmental variables were analyzed by a detrended correspondence analysis(DCA) and redundancy analysis(RDA). A total of 24399 adult specimens of soil mites were captured, belonging to 4 orders, 56 families, and 108 genera(including 9 new records in China), Oribatella was the dominant group. Analysis of variance(ANOVA) showed that there were significant differences in the diversity indices of soil mite communities among the 7 habitats(P < 0.05). The Shannon-Wiener diversity index(H) decreased as follows: coniferous forest > nursery garden > broad-leaved forest > shrubbery > conifer-broadleaf forest > meadow steppe > glade grass. RDA indicated that the first and the second axes explained 34.8% and 27.3% of variation in the main community variables of soil mites, respectively, and all the environmental factors explained 82.1% of the variation in the species composition of soil mite communities. A Monte Carlo displacement test showed that there was a significant correlation between the 10 environmental factors and all ordination axes(F = 7.355, P = 0.002). Altitude, soil water content, and organic matter content had significant effects on the structure and diversity of the mite community.
引文
[1] Maribie C W, Nyamasyo G H N, Ndegwa P N, Mung′atu J K, Lagerl?f J, Gikungu M. Abundance and diversity of soil mites (Acari) along a gradient of land use types in Taita Taveta, Kenya. Tropical and Subtropical Agroecosystems, 2011, 13(1): 11- 26.
    [2] Gormsen D, Hedlund K, Wang H F. Diversity of soil mite communities when managing plant communities on set-aside arable land. Applied Soil Ecology, 2006, 31(1/2): 147- 158.
    [3] Bedano J C, Cantú M P, Doucet M E. Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil. Applied Soil Ecology, 2006, 32(3): 293- 304.
    [4] Gulvik M. Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Polish Journal of Ecology, 2007, 55(3): 415- 440.
    [5] Badejo M A, Ola-Adams BA. Abundance and diversity of soil mites of fragmented habitats in a Biosphere reserve in southern Nigeria. Pesquisa Agropecuária Brasileira, 2000, 35(11): 2121- 2128.
    [6] Wu D H, Zhang B, Bu Z Y, Chen P. The community characteristics of soil mites under different land uses in Changchun metropolitan area, China. Acta Ecologica Sinica, 2006, 26(1): 16- 25.
    [7] Yin X Q, Li X Q, An J C, Wang F B. Characteristics of ecological distribution of soil microarthropod communities in the Wetlands of the Lhasa river on the Qinghai-Tibet Plateau. Wetlands, 2015, 35(3): 589- 596.
    [8] N′Dri J K, Hance T, André H M, Lagerl?f J, Tondoh J E. Microarthropod use as bioindicators of the environmental state: case of soil mites (Acari) from C?te d′Ivoire. Journal of Animal &Plant Sciences, 2016, 29(2): 4622- 4637.
    [9] Lin L, Gao M X, Liu D, Zhang X P, Wu H T, Wu D H. Co-occurrence patterns of above-ground and below-ground mite communities in farmland of Sanjiang Plain, Northeast China. Chinese Geographical Science, 2014, 24(3): 339- 347.
    [10] 郑经鸿, 王丽真, 张兴亚, 王新华, 薄新文. 新疆草地甲螨分布规律研究. 生态学报, 1993, 13(2): 171- 176.
    [11] Zhang Y, Jin D C, Zhou Y F, Yang G P, Liang W Q. Community composition and diversity of soil oribatid mites(Acari: Oribatida) in karst forests in Shibing, Guizhou, Southwestern China. Acta Entomologica Sinica, 2015, 58(7): 791- 799.
    [12] Illig J, Norton R A, Scheu S, Maraun M. Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Experimental and Applied Acarology, 2010, 52(1): 49- 62.
    [13] 高梅香, 刘冬, 张雪萍, 吴东辉. 三江平原农田地表和地下土壤螨类丰富度与环境因子的空间关联性. 生态学报, 2016, 36(6): 1782- 1792.
    [14] Omar A, Ajar Q, Mukaram H, Wu S L. Community diversity and its seasonal dynamics of soil mites in Oasis of the Sangong river watershed of Xinjiang, China. Journal of Xinjiang University: Natural Science Edition, 2016, 33(1): 6- 19.
    [15] Gao M X, Liu D, Lin L, Wu D H. The small-scale structure of a soil mite metacommunity. European Journal of Soil Biology, 2016, 74: 69- 75.
    [16] Bolger T, Arroyo J, Kenny J, Caplice M. Hierarchical analysis of mite community structures in Irish forests——A study of the relative contribution of location, forest type and microhabitat. Applied Soil Ecology, 2014, 83: 39- 43.
    [17] Minor M A, Ermilov S G. Effects of topography on soil and litter mites (Acari: Oribatida, Mesostigmata) in a tropical monsoon forest in Southern Vietnam. Experimental and Applied Acarology, 2015, 67(3): 357- 372.
    [18] Magurran A E. Ecological Diversity and Its Measurement. New Jersey: Princeton University Press, 1988: 1- 179.
    [19] 殷秀琴, 宋博, 董炜华, 辛未冬. 我国土壤动物生态地理研究进展. 地理学报, 2010, 65(1): 91- 102.
    [20] 尹文英. 中国土壤动物检索图鉴.北京: 科学出版社, 1998, 163- 242, 527- 562.
    [21] 青木淳一. 日本土壤动物检索图鉴. 东京: 东海大学出版社, 1991, 173- 436.
    [22] 江原昭三. 日本蜱螨类检索图鉴. 东京: 全国农村教育协会出版社, 1980, 1- 562.
    [23] Balogh J, Balogh P. The Oribatid Mites Genera of the World (Vol. 1 and 2). Budapest: The Hungarian National Museum Press, 1992: 1- 263.
    [24] Krantz G W, Walter D E. A Manual of Acarology. 3rd ed. Texas: Texas Tech University Press, 2009: 1- 806.
    [25] Kardol P, Reynolds W N, Norby R J, Classen A T. Climate change effects on soil microarthropod abundance and community structure. Applied Soil Ecology, 2011, 47(1): 37- 44.
    [26] 王宗英, 路有成, 王慧芙. 九华山土壤螨类的生态分布. 生态学报, 1996, 16(1): 58- 64.
    [27] 吾玛尔·阿布力孜, 阿布都如苏力·吐逊, 木卡热木·阿吉木, 张卫红. 乌鲁木齐地区不同生境土壤捕食性螨类群落结构及其多样性研究. 新疆农业科学, 2012, 49(9): 1748- 1758.
    [28] 吾玛尔·阿布力孜, 阿布都如苏力·吐逊, 木开热木·阿吉木, 吴松林. 准噶尔盆地东南缘绿洲-荒漠交错带土壤螨类的群落多样性与相似性. 干旱区资源与环境, 2013, 27(6): 75- 79.
    [29] 吾玛尔·阿布力孜, 阿提坎木·吾布力喀斯木, 祖胡玛尔·阿里. 乌鲁木齐南山小渠子土壤螨类群落结构研究. 安徽农业科学, 2014, 42(24): 8191- 8197.
    [30] 吾玛尔·阿布力孜, 阿提坎木·吾布力喀斯木, 吴松林. 新疆喀纳斯国家级自然保护区土壤螨类群落特征. 干旱区资源与环境, 2015, 29(2): 99- 104.
    [31] 阿布都如苏力·吐逊, 吾玛尔·阿布力孜, 木开热木·阿吉木. 准噶尔盆地东南缘绿洲-荒漠交错带土壤螨类群落特征初步研究. 干旱区资源与环境, 2013, 27(3): 160- 166.
    [32] 排孜丽耶·合力力, 吾玛尔·阿布力孜, 阿加尔·恰肯. 干旱区不同土地利用类型下土壤螨类群落多样性比较. 新疆农业科学, 2017, 54(12): 2267- 2281.
    [33] 阿加尔·恰肯, 吾玛尔·阿布力孜, 排孜力耶·合力力. 新疆玛纳斯河流域土壤螨类群落多样性. 生态学报, 2017, 37(24): 8385- 8396.
    [34] Dirilgen T, Arroyo J, Dimmers W J, Faber J, Stone D, da Silva P M, Carvalho F, Schmelz R, Griffiths B S, Francisco R, Creamer R E, Sousa J P, Bolger T. Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity. Applied Soil Ecology, 2016, 97: 86- 97.
    [35] Alatalo J M, J?gerbrand A K, Juhanson J, Michelsen A, ?upt. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities. Scientific Reports, 2017, 7: 44489.
    [36] 韩雪梅, 李丹丹, 梁子安, 陈云峰, 胡诚.北方常见农业土地利用方式对土壤螨群落结构的影响. 生态学报, 2013, 33(16): 5026- 5034.
    [37] 张丽梅, 高梅香, 刘冬, 张雪萍, 吴东辉. 环境筛选和扩散限制在地表和地下螨群落物种共存中的调控作用. 生态学报, 2016, 36(13): 3951- 3959.
    [38] N′Dri J K, Seka F A, Pokou P K, N′Da R A G, Lagerl?f J. Abundance and diversity of soil mite (Acari) communities after conversion of tropical secondary forest into rubber plantations in Grand-Lahou, C?te d′Ivoire. Ecological Research, 2017, 32(6): 909- 919.
    [39] Alatalo J M, J?gerbrand A K, Molau U. Impacts of different climate change regimes and extreme climatic events on an alpine meadow community. Scientific Reports, 2016, 6: 21720.
    [40] Zaitsev A S, Chauvat M, Wolters V. Spruce forest conversion to a mixed beech-coniferous stand modifies oribatid community structure. Applied Soil Ecology, 2014, 76: 60- 67.
    [41] Fischer B M, Schatz H. Biodiversity of oribatid mites (Acari: Oribatida) along an altitudinal gradient in the Central Alps. Zootaxa, 2013, 3626 (4): 429- 454.
    [42] Minor M A, Ermilov S G, Anichkin A E. Biodiversity of soil oribatid mites (Acari: Oribatida) in a tropical highland plateaux, Bi Doup-Nui Ba National Park, Southern Vietnam. Tropical Ecology, 2017, 58(1): 45- 55.
    [43] Gao M X, He P, Zhang X P, Liu D, Wu D H. Relative roles of spatial factors, environmental filtering and biotic interactions in fine-scale structuring of a soil mite community. Soil Biology and Biochemistry, 2014, 79: 68- 77.
    [44] Kamczyc J, Urbanowski C, Pers-Kamczyc E. Mite communities (Acari: Mesostigmata) in young and mature coniferous forests after surface wildfire. Experimental and Applied Acarology, 2017, 72(2): 145- 160.
    [45] Minor M A, Babenko A B, Ermilov S G. Oribatid mites (Acari: Oribatida) and springtails (Collembola) in alpine habitats of southern New Zealand. New Zealand Journal of Zoology, 2017, 44(1): 65- 85.