用户名: 密码: 验证码:
铜尾砂和钨尾砂的抗剪强度及宏细观分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SHEAR STRENGTH AND MACRO-MICRO ANALYSIS OF COPPER TAILINGS AND TUNGSTEN TAILINGS
  • 作者:林海 ; 周创兵 ; 陈菲 ; 姜清辉
  • 英文作者:LIN Hai;ZHOU Chuangbing;CHEN Fei;JIANG Qinghui;School of Civil Engineering and Architecture,Nanchang University;School of Civil Engineering,Central South University;School of Civil and Architectural Engineering,Wuhan University;
  • 关键词:尾砂 ; 抗剪强度 ; 矿物成分 ; 微观形态 ; 尾矿库
  • 英文关键词:Tailings;;Shear strength;;Mineral composition;;Micromorphology;;Tailing pond
  • 中文刊名:工程地质学报
  • 英文刊名:Journal of Engineering Geology
  • 机构:南昌大学建筑工程学院;中南大学土木工程学院;武汉大学土木建筑工程学院;
  • 出版日期:2019-04-15
  • 出版单位:工程地质学报
  • 年:2019
  • 期:02
  • 基金:江西省博士后科研择优项目(2016KY38);; 国家自然科学基金项目(41702324);; 江西省青年科学基金项目(20161BAB216115);; 江西省教育厅科学技术研究项目(GJJ150072)资助~~
  • 语种:中文;
  • 页:102-109
  • 页数:8
  • CN:11-3249/P
  • ISSN:1004-9665
  • 分类号:TU41
摘要
铜矿和钨矿在经过开采和选矿过程后产生大量的尾砂,尾砂的抗剪强度直接影响到尾砂筑坝的稳定安全性和材料的创新利用。尾矿库现场取回尾砂的级配曲线不同于选矿产生的全尾砂,选用合适的尾砂抗剪强度参数以及对不同尾砂抗剪强度的比较和分析有助于评估尾矿库的溃坝安全性。为了深入研究铜、钨两种尾砂的抗剪强度及异同点,针对不同粒径范围的铜、钨尾砂进行了直剪试验、X射线衍射分析和扫描电镜分析。直剪试验结果表明,干燥尾砂表现出无黏性土的强度性质,相同粒组尺寸的铜尾砂抗剪强度要高于钨尾砂的抗剪强度;铜尾砂和钨尾砂在含水率为15%情况下的抗剪强度表现出一定的黏聚力,使其抗剪强度相对于干燥状态下提高了16.7%~83.8%;随着含水率从10%增加到20%,细粒钨尾砂的内摩擦角变化不大,含水量的增加使得钨尾砂的黏聚力较明显地减小并使得抗剪强度降低。X射线衍射分析结果显示铜尾砂和钨尾砂都以石英为主晶相,其余矿物成分大都是以硅酸盐为主的次生矿物;5000倍扫描电镜照片显示细粒尾砂颗粒的表面附着一定量的黏土矿物,黏土矿物的存在导致了尾砂抗剪强度随含水率增加而发生变化。
        A large amount of tailings are produced after mining and beneficiation process of copper ore and tungsten ore. The stability safety of tailing dams largely depends on the shear strength characteristics of tailings. And the shear strength properties can also determine the innovative utilization of the tailings in future. The gradation curve of tailings obtained by means of tailing pond site sampling is different from the gradation curve of unclassifiedtailings produced by beneficiation process of ores. Selection of suitable shear strength parameters of tailings and comparative analysis of the shear strength of different tailings can be helpful to evaluate the dam break safety of tailings pond. In order to study the shear strength characteristics of copper tailings and tungsten tailings as well as the main differences and similarities between two kinds of tailings,a series of direct shear tests are carried out for copper tailings and tungsten tailings with different particle size ranges. Besides,X diffraction analysis and scanning electron microscope( SEM) analysis are conducted to study the intrinsic micro mechanism. The direct shear testing results demonstrate that dry copper tailings and dry tungsten tailings behave the strength properties of cohesionless soil. In the case of the same particle size range condition,the shear strength of the copper tailings is higher than that of the tungsten tailings. Both the copper tailings and tungsten tailings show a certain value of cohesion when the water content is 15%. The shear strength of hydrated tailings with water content of 15% increases by 16. 7% ~83. 8% relative to the dry condition. With the increase of water content from 10% to 20%,no obvious change is shown to the internal friction angle of fine grained tungsten tailings. However,the cohesion decreases obviously with the increase of water content,which reduces the shear strength of tailings. The results of X-ray diffraction analysis show that both copper tailings and tungsten tailings are mainly quartz crystal phases and the other mineral components are mostly silicate secondary minerals. The 5000 times magnified SEM photos display that a certain amount of clay minerals can be observed on the surface of fine tailings particles. It is due to the effect of clay minerals that the shear strength of tailings changes with the increase of water content.
引文
Chen R,Lei W,Li Z.2014.Anisotropic shear strength characteristics of a tailings sand[J].Environmental Earth Sciences,71:5165-5172.
    Chu X W,Xu M,Wang Z M.2016.Stability analysis of seepage on the accumulation dam of a phosphogypsum tailings[J].Journal of Engineering Geology,24(4):661-667.
    Dimitrova R S,Yanful E K.2012a.Factors affecting the shear strength of mine tailings/clay mixtures with varying clay content and clay mineralogy[J].Engineering Geology,125:11-25.
    Dimitrova R S,Yanful E K.2012b.Effect of drainage conditions,bed thickness,and age on the shear strength of mine tailings in a very low stress range[J].Canadian Geotechnical Journal,49(3):285-297.
    Hu L M,Wu H,Zhang L,et al.2017.Geotechnical properties of mine tailings[J].Journal of Materials in Civil Engineering,29(2):04016220.
    Jiang Q H,Hu L M,Lin H.2017.Advances in research of tailings dam failures[J].Advances in Science and Technology of Water Resources,37(4):77-86.
    Jing X F,Yin G Z,Wei Z A,et al.2011.Model experimental study of collapse mechanism and broken mode of tailings dam[J].Rock and Soil Mechanics,32(5):1377-1404.
    Li D S,Liu D S,He W J,et al.2016.Experimental study on the effect of particle size to shear strength of weathering gangue[J].Journal of Engineering Geology,24(3):376-383.
    Li Z P,Peng Z B,Xiao Z Q,et al.2013.Variation of internal friction angle of tailings with standard penetration number under influence of water content[J].Rock and Soil Mechanics,34(5):1340-1344.
    Liu B,Lu Y,Liu C,et al.2017.Extraction technology of microstructure of sandy soil in compression processes[J].Journal of Engineering Geology,25(4):968-974.
    Matyas E L,Welch D E,Reades D W.1984.Geotechnical parameters and behavior of uranium tailings[J].Canadian Geotechnical Journal,21(3):489-504.
    Pettibone H C,Kealy C D.1971.Engineering properties of mine tailings[J].Journal of the Soil Mechanics and Foundations Division,97(9):1207-1225.
    Qiu Y,Sego D C.2001.Laboratory properties of mine tailings[J].Canadian Geotechnical Journal,38(1):183-190.
    Rassam D W.2002.Variation of evaporative and shear strength parameters along a tailings delta[J].Canadian Geotechnica Journal,39(1):32-45.
    Song Z G,Sun C Y,Wang Z M,et al.2011.Current situation and prospects of China tungsten mineral processing technology[J]Mining&Metallurgy,20(1):1-7.
    Wu Z Z,Mei G D.2014.Statistical analysis of tailings pond accidents and cause analysis of dam failure[J].China Safety Science Journal,24(9):70-76.
    Zhang P W,Wu H,Hu L M,et al.2015.Mechanical characteristics o iron mine tailing materials and analysis on deformation and stability of tailing dam[J].Journal of Engineering Geology,23(6):1189-1195.
    Zhang X L,Zhou J,Huang Z Q,et al.2016.Experimental study on effec of clay content on shear strength of expansive soil at Ci county[J].Journal of Engineering Geology,24(1):109-115.
    Zhu J Q,Hu D W,Li X W,et al.2017.Mechanism behaviours of sands with fines based on intergranular state variables[J].Journal o Engineering Geology,25(3):747-757.
    褚学伟,许模,王中美.2016.某磷石膏尾矿库堆积坝渗透稳定性分析[J].工程地质学报,24(4):661-667.
    姜清辉,胡利民,林海.2017.尾矿库溃坝研究进展[J].水利水电科技进展,37(4):77-86.
    敬小非,尹光志,魏作安,等.2011.尾矿坝垮塌机制与溃决模式试验研究[J].岩土力学,32(5):1377-1404.
    李东升,刘东升,贺文俊,等.2016.风化煤矸石抗剪强度粒径影响试验研究[J].工程地质学报,24(3):376-383.
    李志平,彭振斌,肖尊群,等.2013.含水率影响下尾矿砂内摩擦角随标贯击数变化研究[J].岩土力学,34(5):1340-1344.
    刘兵,卢毅,刘春,等.2017.砂土压缩过程中微观结构提取技术研究[J].工程地质学报,25(4):968-974.
    宋振国,孙传尧,王中明,等.2011.中国钨矿选矿工艺现状及展望[J].矿冶,20(1):1-7.
    吴宗之,梅国栋.2014.尾矿库事故统计分析及溃坝成因研究[J].中国安全科学学报,24(9):70-76.
    张鹏伟,吴辉,胡黎明,等.2015.铁矿尾矿料力学特性及坝体变形稳定性研究[J].工程地质学报,23(6):1189-1195.
    张晓丽,周进,黄志全,等.2016.黏粒含量对磁县段膨胀土抗剪强度影响的试验研究[J].工程地质学报,24(1):109-115.
    朱建群,胡大为,李雄威,等.2017.基于粒间状态变量的含细砂土力学性状分析[J].工程地质学报,25(3):747-757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700