用户名: 密码: 验证码:
香蕉枯萎病菌致病机理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in pathogenic mechanism of Fusarium oxysporum f. sp. cubense
  • 作者:李敏慧 ; 苑曼琳 ; 姜子德 ; 李华平
  • 英文作者:LI Minhui;YUAN Manlin;JIANG Zide;LI Huaping;Department of Plant Pathology, College of Agriculture, South China Agricultural University;
  • 关键词:香蕉枯萎病 ; 尖孢镰刀菌古巴专化型 ; 遗传多样性 ; 致病机理
  • 英文关键词:Banana Fusarium wilt;;Fusarium oxysporum f.sp.cubense;;Genetic diversity;;Pathogenic mechanism
  • 中文刊名:果树学报
  • 英文刊名:Journal of Fruit Science
  • 机构:华南农业大学农学院植物病理学系;
  • 出版日期:2019-04-03 13:32
  • 出版单位:果树学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金(31871911);; 现代农业产业(香蕉)技术体系(CARS-32-05);; 广东省自然科学基金(2018A030313699)
  • 语种:中文;
  • 页:129-137
  • 页数:9
  • CN:41-1308/S
  • ISSN:1009-9980
  • 分类号:S436.68
摘要
香蕉是世界重要的水果作物和第四大粮食作物,也是世界贸易第一大宗水果,具有很高的经济价值,然而目前由尖孢镰刀菌古巴专化型(Fusarium oxysporum f. sp. cubense)引起的香蕉枯萎病正严重威胁着全世界的香蕉生产。由于病原菌通过土壤传播,迄今该病害还没有有效的防治措施,且其致病机理尚未完全明确。本文对香蕉枯萎病菌的遗传多样性及其致病机理研究进展系统进行概述,以期为香蕉枯萎病的综合防控提供理论依据。
        Banana is the fourth largest food crop and the largest commercial fruit in the world. However, banana Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense(Foc), has been seriously threatening banana industry worldwide. To date, three physiological races of Foc have been identified worldwide, of which tropical race 4(TR4) is the most destructive pathogen and has significant impacts on banana production, and it is also the main pathogen of banana Fusarium wilt in China. The genetic diversity of Foc is different among different physiological races, and Foc has more genetic diversity within race 1 isolates than within race 4 isolates. All TR4 isolates belong to VCG01213/01216 and were identified with the same genetic lineage. As the typical representative of F. oxysporum species complex(FOSC) and the model fungus of soil-borne disease, Foc has been studied by scientists all over the world. However, the research on the pathogenic mechanism of Foc is relatively backward compared with that of F. oxysporum f. sp. lycopersici. Most of the current results on pathogenicity mechanism in Foc were sumarized from the results of studies on other form a specialis of F. oxysporum. However, because of the complex genetic background of FOSC, even different races and different VCG isolates possess distinct pathogenicity differentiation, the results of the other forma specialis of F. oxysporum are not completely applicable to Foc. So, it's necessary to conduct correlated research work on Foc. The process of infection by F. oxysporum can be divided into several steps: recognition between pathogen and host, attachment to root surface, penetration, colonization of the root cortex and finally presentation of diseased symptom on host plant. Based on the infection process, recent research results in the molecular mechanism of Foc were reviewed. 1. Recognition between pathogen and host plant, the first step in pathogenesis, is important for pathogen invading host plant. Researches on Foc showed that α-1,6-mannosyltransferase Och1 and β-1,3-mannosyltransferase Gas1 were involved in fungal cell wall integrity,could affect the pathogen's attachment to the root of the host,then reduce the mycelia invasion and the virulence of Foc. Two mitogen-activated protein kinases(MAPK) signaling pathways represented by Fmk1 and Mpk1 were found to be highly correlated with cell wall integrity in F. oxysporum. Researches on Foc also confirmed that the gene(in the Mpk1 signaling pathway) deletion mutants(ΔFoBck1,ΔFoMkk2 and ΔFoSlt2) showed more sensitive to cell wall inhibitors, Congo red(CR) and Fluorescent white(CFW), than that of wild type, indicating that the integrity of the mutants cell wall was destroyed.In addition, FoSlt2(homologue of Mpk1) knockout mutant also showed decreased virulence in Cavendish banana which further verified the relationship between cell wall integrity and pathogenicity. These results suggest that cell wall integrity is an important factor for the attachment and invasion of Foc during the recognition process. 2. Cell wall degrading enzymes(CWDEs), secreted by F. oxysporum, play an important role in invasion and colonization of pathogenesis. However, deletion of individual CWDEencoding genes did not affect the virulence possibly because of functional redundancy. It is suggested that the pathogenicity is the result of the synergism of several synthesis genes of CWDEs. A protein kinase Snf1 isolated from F. oxysporum was identified as a transcriptional regulator and affects the activity of CWDEs. A transcriptional coactivator FoHfi1 in Foc was reported, and the encoding gene is located in the upstream of Snf1 and affects the activity of CWDEs. 3. Fungal toxin plays an important role in colonization of pathogenesis. It was reported that fusaric acid(FA) was the main component of Foc crude toxin as well as beauverin and fumonisin. FA biosynthetic gene(FUB) cluster have been reported in F. oxysporum. The cluster was consisted of at least 12 genes. And among them nine genes(including two zinc finger transcription factors) were essential for the biosynthesis of FA. 4. Comparative genomics analysis has revealed that the genome of F. oxysporum is compartmentalized into two regions. One is the core genomic region which is responsible for essential functions such as basic metabolism and reproduction. And the other is accessory genomic region which is responsible for the host specialization and pathogen virulence. Genome compartmentalization provides new insight into how different strains adapted to different hosts which is also helpful for identification of new pathogenicity-related genes in Foc. 5. Some other pathogenecity factors have been reported in Foc, such as the G-protein subunits FGA1, FGA2 and FGB1 which may affect the virulence potentially via the cAMP-dependent protein kinase pathway. These results provide information for elucidating the role of G protein signaling pathway in the pathogenesis of F. oxysporum. In this paper, genetic diversity and molecular mechanism of pathogenesis in F. oxysporum f. sp. cubense were summarized. The deciphering of pathogenic mechanism will help us to identify new pathogenicity-related genes in Foc, and the identification of key pathogenic factors involved in pathogenesis of Foc will provide some targets for effectively controlling the banana Fusarium wilt.
引文
[1]张锡炎.香蕉产业发展面临的重大问题和对策措施[J].中国果业信息,2017,34(1):7-10.ZHANG Xiyan. Major problems and countermeasures in the development of Banana industry[J]. China Fruit News,2017,34(1):7-10.
    [2] PLOETZ R C,KEMA G H J,MA L J. Impact of diseases on export and smallholder productin of banana[J]. The Annual Review of Phytopathology,2015,53(1):269-288.
    [3] WORKMAN D. Bananas Exports by Country. Worlds Top Exports[EB/OL].[2018-08-16]. http://www.worldstopexports.com/bananas-exports-country/3363/.
    [4] ORDONEZ N,SEIDL M F,WAALWIJK C,DRENTH A,KILIAN A,THOMMA B P H J,PLOETZ R C,KEMA G H J.Worse comes to worst:Bananas and Pananma disease-when plant and panthogen clones meet[J]. PLoS Pathogens,2015,11(11):e1005197.
    [5] PLOETZ R,FREEMAN S,KONKOL J,AL-ABED A,NASER Z,SHALAN K,BARAKAT R,ISRAELI Y. Tropical race 4 of Panama disease in the Middle East[J]. Phytoparasitica,2015,43(3):283-293.
    [6] PLOETZ R C. Fusarium wilt of banana[J]. Phytopathology,2015,105(12):1512.
    [7] BUTLER D. Fungus threatens top banana[J]. Nature,2013,504:195-196.
    [8] ORDONEZ L N,GARCIA-BASTIDAS F,LAGHARI H B,AKKARY M Y,HARFOUCHE E N,AL AWAR B N,KEMA G H J. First report of Fusarium oxysporum f. sp. cubense tropical race 4 causing Panama disease in Cavendish bananas in Pakistan and Lebanon[J]. Plant Disease,2015,100(1):209-210.
    [9] MOSTERT D,MOLINA A B,DANIELLS J,FOURIE G,HERMANTO C,CHAO C P,FABREGAR E,SINOHIN V G,MASDEK N,THANGAVELU R,LI C Y,YI GY,MOSTERT L,VILJOEN A. The distribution and host range of the banana Fusarium wilt fungus,Fusarium oxysporum f. sp. cubense in Asia[J]. PLoS ONE,2017,12(7):e0181630.
    [10] GARCIA-BASTIDAS F,ORDONEZ N,KONKOL J,ALQASIM M,NASER Z,ABDELWALI M,SALEM N,WAALWIJK C,PLOETZ R C,KEMA G H J. First report of Fusarium oxysporum f. sp. cubense tropical race 4 associated with Panama disease of Banana outside Southeast Asia[J]. Plant Disease,2014,98(5):694.
    [11] NITANI T,AKAI K,HASEGAWA R,YU A,GARCIA R R,CHITOSE A. Panama disease of banana occurred in Miyakojima Island,Okinawa,Japan[J]. Journal of General Plant Pathology,2018,84(2):165-168.
    [12] ZHENG S J,GARCIA-BASTIDS F A,LI X D,ZENG L,……,KEMA G H J. New geographical insights of the latest expansion of Fusarium oxysporum f. sp. cubense tropical race 4 into the Greater Mekong Subregion[J]. Frontiers in Plant Science,2018,9:457.
    [13] HWANG S C,KO W H. Cavendish banana cultivars resistant to fusarium wilt acquired through somaclonal variation in Taiwan[J]. Plant Disease,2004,88(6):580-588.
    [14] STOVER R H. Disease management strategies and the survival of the banana industry[J]. The Annual Review of Phytopathology,1986,24(1):83-91.
    [15]戚佩坤.广东果树真菌病害志[M].北京:中国农业出版社,2000:24-37.QI Peikun. Fungal diseases of fruit trees in Guangdong province[M]. Beijing:China Agriculture Press,2000:24-37.
    [16]李敏慧,习平根,姜子德,戚佩坤.广东香蕉枯萎病菌生理小种的鉴定[J].华南农业大学学报,2007,28(2):38-41.LI Minhui,XI Pinggen,JIANG Zide,QI Peikun. Race identification of Fusarium oxysporum f. sp. cubense,the causal agent of banana Fusarium wilt in Guangdong province[J]. Journal of South China Agricultural University,2007,28(2):38-41.
    [17]漆艳香,谢艺贤,张欣,蒲金基,张辉强.海南省香蕉枯萎病病原菌的鉴定[J].生物技术通报,2006(增刊):316-319.QI Yanxiang,XIE Yixian,ZHANG Xin,PU Jinji,ZHANG Huiqiang. The identification of pathogen causing banana Fusarium wilt in Hainan[J]. Biotechnology Bulletin,2006(Suppl.):316-319.
    [18]叶明珍,张绍升.福建省香蕉枯萎病菌硝酸盐营养突变体的营养体亲和性测定[J].植物病理学报,2006,36(4):375-377.YE Mingzhen,ZHANG Shaosheng. Nitrate nonutilizing mutants of Fusarium oxysporum f. sp. cubense and use in vegetative compatibility tests in Fujian,China[J]. Acta Phytopathologica Sinica,2006,36(4):375-377.
    [19]莫贱友,郭堂勋,李焜华.广西蕉类枯萎病发生及为害情况调查初报[J].中国南方果树,2006,35(3):53-54.MO Jianyou,GUO Tangxun,LI Kunhua. Preliminary report on the occurrence and damage of banana wilt in Guangxi[J]. South China Fruits,2006,35(3):53-54.
    [20]曾莉,郭志祥,番华彩,李洪祥,唐志敏,李雁,杨佩文,白亭亭.云南香蕉枯萎病及防治研究进展[J].热带农业科技,2016,39(4):19-22.ZENG Li,GUO Zhixiang,FAN Huacai,LI Hongxiang,TANG Zhimin,LI Yan,YANG Peiwen,BAI Tingting. Advance in research of Banana Panama disease and its control in Yunnan Province[J]. Tropical Agricultural Science&Technology,2016,39(4):19-22.
    [21] KOENIG R L,PLOETZ R C,KISTLER H C. Fusarium oxysporum f. sp. cubense consists of a small number of divergent and globally distributed clonal lineages[J]. Phytopathology,1997,87(9):915-923.
    [22] O’DONNELL K,KISTLER H C,CIGELNIK E,PLOETZ R C.Multiple evolutionary origins of the fungus causing Panama disease of banana:Concordant evidence from nuclear and mitochondrial gene genealogies[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(5):2044–2049.
    [23] FOURIE G,STEENKAMP E T,GORDON T R,Viljoen A. Evolutionary relationships among the Fusarium oxysporum f. sp.cubense vegetative compatibility groups[J]. Applied and Environmental Microbiology,2009,75(14):4770-4781.
    [24] MARYANI N,LOMBARD L,POERBA Y S,SUBANDIYAH S,CROUS P W,KEMA G H J. Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f.sp. cubense in the Indonesian centre of origin[J]. Studies in Mycology,2019,92:155-194.
    [25] LI M H,YANG B J,LENG Y Q,CHAO C P,LIU J M,HE Z F,JIANG Z D,ZHONG S B. Molecular characterization of Fusarium oxysporum f. sp. cubense Race 1 and 4 isolates from Taiwan and Southern China[J]. Canadian Journal of Plant Pathology,2011,33(2):168-178.
    [26] LI M H,SHI J X,XIE X L,LENG Y Q,WANG H F,XI P G,ZHOU J N,ZHONG S B,JIANG Z D. Identification and application of a unique genetic locus in diagnosis of Fusarium oxysporum f. sp. cubense tropical race 4[J]. Canadian Journal of Plant Pathology,2013,35(4):482-493.
    [27] LI C Y,MOSTERT G,ZUO C W,BEUKES I,YANG Q S,SHENG O,KUANG R B,WEI Y R,HU C H,ROSE L,KARANGWA P,YANG J,DENG G M,LIU S W,GAO J,VILJOEN A,YI G J. Diversity and distribution of the Banana wilt pathogen Fusarium oxysporum f. sp. cubense in China[J]. Fungal Genomics&Biology,2013,3(2):111.
    [28] CORRELL J C. The relationship between formae speciales,races and vegetative compatibility groups in Fusarium oxysporum[J]. Phytopathology,1991,81(9):1061-1064.
    [29] MICHIELSE C B,REP M. Pathogen profile update:Fusarium oxysporum[J]. Molecular Plant Pathology,2009,10(3):311-324.
    [30] SCHOFFELMEER E A,KLIS F M,SIETSMA J H,CORNELISSEN B J C. The cell wall of Fusarium oxysporum[J]. Fungal Genetics&Biology,1999,27(2-3):275-282.
    [31] GEOGHEGAN I,STEINBERG G,GURR S. The role of the fungal cell wall in the infection of plants[J]. Trends in Microbiology,2017,25(12):957-967.
    [32] LI M H,XIE X L,LIN X F,SHI J X,DING Z J,LING J F,XI P G,ZHOU J N,LENG Y Q,ZHONG S B,JIANG Z D. Functional characterization of the gene FoOCH1 encoding a putativeα-1,6-mannosyltransferase in Fusarium oxysporum f. sp. cubense[J]. Fungal Genetics&Biology,2014,65:1-13.
    [33] CARACUEL Z,MARTíNEZ-ROCHA A L,DI PIETRO A,MADRID M P,RONCERO M I. Fusarium oxysporum gas1 encodes a putative beta-1,3-glucanosyltransferase required for virulence on tomato plants[J]. Molecular Plant-Microbe Interactions,2005,18(11):1140-1147.
    [34] SEGORBE D,DI PIETRO A,PéREZ-NADALES E,TURRàD. Three Fusarium oxysporum mitogen-activated protein kinases(MAPKs)have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity[J]. Molecular Plant Pathology,2017,18(7):912-924.
    [35] DI PIETRO A,GARCíA-MACEIRA F I,MéGLECZ E,RONCERO M I. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis[J].Molecular Microbiology,2001,39(5):1140-1152.
    [36] DING Z J,LI M H,SUN F,XI P G,SUN L H,ZHANG L H,JIANG Z D. Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense[J]. PLoS ONE,2015,10(4):e0122634.
    [37] PéREZ-NADALES E,DI PIETRO A. The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum[J]. Plant Cell,2011,23(3):1171-1185.
    [38] MARTíNEZ-ROCHA A L, RONCERO M I, LóPEZRAMIREZ A,MARINéM,GUARRO J,MARTíNEZ-CADENA G,DI PIETRO A. Rho1 has distinct functions in morphogenesis,cell wall biosynthesis and virulence of Fusarium oxysporum[J]. Cellular Microbiology,2008,10(6):1339-1351.
    [39] TURRA D,SEGORBE D,DI PIETRO A. Protein kinases in plant pathogenic fungi:conserved regulators of infection[J]. The Annual Review of Phytopathology,2014,52(1):267-288.
    [40] KUBICEK C P,STARR T L,GLASS N L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic Fungi[J]. Annual Review of Phytopathology,2014,52(1):427-451.
    [41] DI PIETRO A,MADRID M P,CARACUEL Z,DELGADO-JARANA J,RONCERO M I G. Fusarium oxysporum:exploring the molecular arsenal of a vascular wilt fungus[J]. Molecular Plant Pathology,2003,4(5):315-325.
    [42] MICHIELSE C B,VAN WIJK R,REIJNEN L,CORNELISSEN B J,REP M. Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through largescale insertional mutagenesis[J]. Genome Biology,2009,10(1):R4.
    [43] OSPINA-GIRALDO M D,MULLINS E,KANG S. Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis[J]. Current Genetics,2003,44(1):49-57.
    [44] ISLAM K T,BOND J P,FAKHOURY A M. FvSNF1,the sucrose non-fermenting protein kinase gene of Fusarium virguliforme,is required for cell-wall-degrading enzymes expression and sudden death syndrome development in soybean[J]. Current Genetics,2017,63(4):1-16.
    [45] JONKERS W,RODRIGUES C D,REP M. Impaired colonization and infection of tomato roots by theΔfrp1 mutant of Fusarium oxysporum correlates with reduced CWDE gene expression[J]. Molecular Plant-Microbe Interactions,2009,22(5):507-518.
    [46]李敏慧,张荣,姜大刚,习平根,庄楚雄,姜子德.根癌农杆菌介导的香蕉枯萎病菌4号生理小种的转化[J].植物病理学报,2009,39(4):405-412.LI Minhui,ZHANG Rong,JIANG Dagang,XI Pinggen,ZHUANG Chuxiong,JIANG Zide. Agrobacterium tumefaciensmediated transformation of Fusarium oxysporum f. sp. cubense race 4[J]. Acta Phytopathologica Sinica,2009,39(4):405-412.
    [47]施金秀,林先丰,姜乃月,凌金锋,李敏慧,姜子德.香蕉枯萎病菌2种细胞壁降解酶酶活性平板检测方法[J].华南农业大学学报,2013,34(3):340-344.SHI Jinxiu,LIN Xianfeng,JIANG Naiyue,LING Jinfeng,LI Minhui,JIANG Zide. Plate assays for measurement of two kinds of cell wall degrading enzymes activity in Fusarium oxysporum f.sp. cubense[J]. Journal of South China Agricultural University,2013,34(3):340-344.
    [48] LI M H,NONG H J,XU Z Y,XIE X L,XI P G,SUN L H,JIANG Z D. The gene HFI1 encoding a transcriptional coactivator in Fusarium oxysporum f. sp. cubense is required for virulence on banana plants[J]. Phytopathology,2015,105(Suppl. 4):81.
    [49] BANI M,RISPAIL N,EVIDENTE A,RUBIALES D,CIMMINO A. Identification of the main toxins isolated from Fusarium oxysporum f.sp. pisi Race 2 and their relation with isolates pathogenicity[J]. Journal of Agricultural and Food Chemistry,2014,62(12):2574-2580.
    [50] WANG M,LING N,DONG X,LIU X K,SHEN Q R,GUO S W. Effect of fusaric acid on the leaf physiology of cucumber seedlings[J]. European Journal of Plant Pathology,2014,138(1):103-112.
    [51] SINGH V K,SINGH H B,UPADHYAY R S. Role of fusaric acid in the development of‘Fusarium wilt’symptoms in tomato:physiological,biochemical and proteomic perspectives[J]. Plant Physiology and Biochemistry,2017,118:320-332.
    [52]许文耀,兀旭辉,林成辉.香蕉枯萎病菌粗毒素的毒性及其模型[J].热带作物学报,2004,25(24):25-29.XU Wenyao,WU Xuhui,LIN Chenhui. The toxicity of the crude toxin of Fusarium oxysporum f. sp. cubenseand its model[J]. Chinese Journal of Tropical Crops,2004,25(24):25-29.
    [53] DONG X,LING N,WANG M,SHEN Q R,GUO S W. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants[J]. Plant Physiology and Biochemistry,2012,60:171-179.
    [54] KELLER NP,TURNER G,BENNETT J W. Fungal secondary metabolism-from biochemistry to genomics[J]. Nature Reviews Microbiology,2006,3(12):937-947.
    [55] BROWN D W,LEE S H,KIM L H,RYU J G,LEE S,SEO Y,KIM Y H,BUSMAN M,YUN S H,PROCTOR R H,LEE T.Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics[J]. Molecular Plant-Microbe Interactions,2015,28(3):319-322.
    [56] DING Z J,YANG L Y,WANG G F,GUO L J,LIU L,WANG J,HUANG J S. Fusaric acid is a virulence factor of Fusarium oxysporum f. sp. cubense on banana plantlets[J]. Tropical Plant Pathology,2018,43:297-305.
    [57] LI C Y,ZUO C W,DENG G M,KUANG R B,YANG Q S,HU C H,SHENG O,ZHANG S,MA L J,WEI Y R,YANG J,LIU S W,BISWAS M K,VILJOEN A,YI G J. Contamination of Bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense[J]. PLoS ONE,2013,8(7):e70226.
    [58] PORTAL N,SOLERA,ALPHONSINE P A M,BORRAS-HIDALGO O,PORTIELES R,PENA-RODRIGUEZ L M,YANES E,HERRERA L,SOLANO J,RIBADENEIRA C,WALTON J D,SANTOS R. Nonspecific toxins as components of a host-specific culture filtrate from Fusarium oxysporum f.sp. cubense Race1[J]. Plant,2018,67(2):467-476.
    [59] MA L J,VAN DER P,DOES H C,……,REP M. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium[J]. Nature,2010,464:367–373.
    [60] MA L J,GEISER D M,PROCTOR R H,ROONEY A P,O'DONNELL K,TRAIL F,GARDINER D M,MANNERS J M,KAZAN K. Fusarium pathogenomics[J]. The Annual Review of Microbiology,2013,67(1):399-416.
    [61] VAN DAM P,FOKKENS L,SCHMIDT S M,LINMANS J H,KISTLER H C,MA L J,REP M. Effector profiles distinguish formae speciales of Fusarium oxysporum[J]. Environmental Microbiology,2016,18(11):4087-4102.
    [62] VAN DAM P,DE SAIN M,TER HORST A,VAN DER GRAGT M,REP M. Use of comparative genomics-based markers:discrimination of host-specificity in Fusarium oxysporum[J]. Applied and Environmental Microbiology. 2018,84(1):e01868-17.
    [63] ZHANG Y,MA L J. Deciphering pathogenicity of Fusarium oxysporum from a phylogenomics perspective[J]. Advances in Genetics,2017,100:179-209.
    [64] MA L,JIANG S,LIN G M,CAI J H,YE X X,CHEN H B,LI M H,LI H P,TAKá?T,?AMAJ J,XU C X. Wound-induced pectin methylesterases enhance banana(Musa spp. AAA)susceptibility to Fusarium oxysporum f. sp. cubense[J]. Journal of Experimental Botany,2013,64(8):2219-2229.
    [65] FAN H Y,DONG H H,XU C X,LIU J,HU B,YE J W,MAI G W,LI H P. Pectin methylesterases contribute the pathogenic diferences between Races 1 and 4 of Fusarium oxysporum f. sp.cubense[J]. Scientific Reports,2017,7(1):13140.
    [66] KHRAIWESH B,ZHU J K,ZHU J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants[J]. Biochim Biophys Acta,2012,1819(2):137-148.
    [67] LEE H C,LI L,GU W,XUE Z,CROSTHWAITE S K,PERTSEMLIDIS A,LEWIS Z A,FREITAG M,SELKER E U,MELLO C C,LIU Y. Diverse pathways generate microRNAlike RNAs and Dicer-independent small interfering RNAs in fungi[J]. Molecular Cell,2010,38(6):803-814.
    [68] WEIBERG A,WANG M,LIN FM,ZHAO H,ZHANG Z,KALOSHIAN I,HUANG H D,JIN H. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science,2013,342(6154):118-123.
    [69] WANG B,SUN Y F,SONG N,ZHAO M X,LIU R,FENG H,WANG X J,KANG Z S. Puccinia striiformis f. sp. tritici microRNA-like RNA 1(Pst-milR1),an important pathogenicity factor of Pst,impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene[J]. New Phytologist,2017,215(1):338-350.
    [70] CHEN R,JIANG N,JIANG Q,SUN X,WANG Y,ZHANG H,HU Z. Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum[J]. PLoS ONE,2014,9(8):e104956.
    [71] GUO L J,YANG L Y,LIANG C C,WANG J,LIU L,HUANG J S. The G-protein subunits FGA2 and FGB1 paly distinct roles in development and pathogenicity in the banana fungal pathogen Fusarium oxysporum f. sp. cubense[J]. Physiological and Molecular Plant Pathology,2016,93:29-38.
    [72] GUO L J,YANG Y H,YANG L Y,WANG F Y,WANG G F,HUANG J S. Functional analysis of the G-proteinαsubunits FGA1 and FGA3 in the banana pathogen Fusarium oxysporum f. sp. cubense[J]. Physiological and Molecular Plant Pathology,2016,94:75-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700