干旱区包气带土壤水分运移能量关系及驱动力研究评述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of studies on the relationship between soil water movement and energy and their driving forces in the vadose zone of arid regions
  • 作者:周宏
  • 英文作者:ZHOU Hong;Linze Inland River Basin Research Station, Chinese Ecosystem Network Research, Key Laboratory of Ecohydrology of Inland River Basin, The Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:干旱区 ; 包气带 ; 水分运移 ; 能量 ; 驱动力
  • 英文关键词:arid region;;vadose zone;;soil moisture movement;;energy;;driving forces
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国生态系统研究网络临泽内陆河流域研究站中国科学院内陆河流域生态水文重点实验室中国科学院西北生态环境资源研究院;中国科学院大学;
  • 出版日期:2019-07-04 16:06
  • 出版单位:生态学报
  • 年:2019
  • 期:18
  • 基金:国家自然科学基金重点项目(41630861)
  • 语种:中文;
  • 页:14-25
  • 页数:12
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S152.7
摘要
包气带土壤能量和水分平衡及其驱动因子是维系地下水-土壤-植物-大气连续体(GSPAC)系统中水分运移发生的关键因素。在降水稀少、水资源短缺的干旱地区,开展包气带土壤水分形态、运移过程与能量的耦合规律研究对揭示区域水资源形成和转化机理具有极其重要的现实意义。文章总结了土壤水分运移理论研究进展,探讨了水分参与水文循环过程及干旱环境下土壤水分可能表现形态及其降雨入渗、再分布、渗漏、蒸发、毛管水上升等过程驱动机制,评述了包气带土壤水分与能量过程在不同空间尺度上生态水分效应。在一个非饱和土壤系统中,水分运移受包气带结构,土壤物理特征,植物根系和土壤生化环境的综合控制,物质和能量平衡改变是驱动水分循环的源动力,而土壤环境变化是导致水分运移形态的发生变化根本原因。因此,在气候变化背景下,研究干旱区土壤与大气界面以及包气带与饱和带界面水、汽、热耦合转化形式与能量驱动过程,能够提升我们对包气带土壤水分运移规律机理的深入理解,丰富对区域气候和水文变化认知。为干旱区生态植被恢复建设和水资源精细化管理提供理论向导。
        In the vadose zone, the soil energy and water balance and its driving forces are key factors that maintain soil moisture movement in the groundwater-soil-plant-atmospheric continuum(GSPAC) system. However, in arid regions with lower precipitation and water resources, studies on coupling soil water state and movement processes and the partitioning and migration of energy are important to understand the formation and transformation mechanisms of regional water resources. In this paper, advances in soil water transport theory are summarized. We also discuss the water cycle in the system and the possible ways by which soil water is lost under arid conditions, as well as the driving mechanisms behind rainwater infiltration, redistribution, drainage, evaporation, and capillary rise. This paper also reviews the ecological hydrological effect of soil moisture and energy processes on different spatial scales. In unsaturated soil systems, soil water movement is controlled by the vadose zone structure, soil physical characteristics, plant root system and soil biochemical environment. Changes in matter and energy balance are the driving forces of the hydrological cycle, and change in the soil environment is a fundamental factor for change in the soil water state. Therefore, under global climate change, studies on the energy and driving mechanism of coupling liquid water, water vapor, and heat transport through the interface between the soil surface and atmosphere or groundwater could elucidate the transport mechanism of soil water and help us to better understand regional climate and hydrological changes. The ultimate objective is to provide theoretical guidance for the restoration and construction of ecological vegetation and precision management of water resources.
引文
[1] Huang J P,Zhang W,Zuo J Q,Bi J Q,Shi J R,Wang X,Chang Z L,Huang Z W,Yang S,Zhang B D,Wang G Y,Feng G H,Yuan J Y,Zhang L,Zuo H C,Wang S G,Fu C B,Chou J F.An overview of the semi-arid climate and environment research observatory over the loess plateau.Advances in Atmospheric Sciences,2008,25(6):906- 921.
    [2] Grace J,José J S,Meir P,Miranda H S,Montes R A.Productivity and carbon fluxes of tropical savannas.Journal of Biogeography,2006,33(3):387- 400.
    [3] Feng S,Fu Q.Expansion of global drylands under a warming climate.Atmospheric Chemistry and Physics,2013,13(19):10081- 10094.
    [4] Schwinning S,Sala O E.Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.Oecologia,2004,141(2):211- 220.
    [5] Zhao W Z,Liu B.The response of sap flow in shrubs to rainfall pulses in the desert region of China.Agricultural and Forest Meteorology,2010,150(9):1297- 1306.
    [6] Kahil M T,Dinar A,Albiac J.Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions.Journal of Hydrology,2015,522:95- 109.
    [7] Banwart S,Bernasconi S M,Bloem J,Blum W,Brandao M,Brantley S,Chabaux F,Duffy C,Kram P,Lair G,Lundin L,Nikolaidis N,Novak M,Panagos P,Ragnarsdottir K V,Reynolds B,Rousseva S,de Ruiter P,van Gaans P,van Riemsdijk W,White T,Zhang B.Soil processes and functions in critical zone observatories:hypotheses and experimental design.Vadose Zone Journal,2011,10(3):974- 987.
    [8] Nakhaei M,?im■nek J.Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS- 2D code.Journal of Hydrology and Hydromechanics,2014,62(1):7- 15.
    [9] Korzoun V I,Sokolov A A,Budyko M I,Voskresensky K P,Kalinin G P.World Water Balance and Water Resources of the Earth.Paris:UNESCO,1978.
    [10] Harter T,Onsoy Y S,Heeren K,Denton M,Weissmann G,Hopmans J W,Horwath W R.Deep vadose zone hydrology demonstrates fate of nitrate in eastern San Joaquin Valley.California Agriculture,2005,59(2):124- 132.
    [11] Braud I,Fernandez P,Bouraoui F.Study of the rainfall-runoff process in the Andes region using a continuous distributed model.Journal of Hydrology,1999,216(3/4):155- 171.
    [12] Rana G,Katerji N.Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate:a review.European Journal of Agronomy,2000,13(2/3):125- 153.
    [13] Dardanelli J L,Ritchie J T,Calmon M,Andriani J M,Collino D J.An empirical model for root water uptake.Field Crops Research,2004,87(1):59- 71.
    [14] Kinzelbach W,Aeschbach W,Alberich C,Goni I B,Beyerle U,Brunner P,Chiang W H,Rueedi J,Zollmann K.A Survey of Methods for Groundwater Recharge in Arid and Semi-Arid Regions.UNEP/DEWA/RS.02- 2,Nairobi,Kenya:United Nations Environment Programme,2002.
    [15] Rimon Y,Dahan O,Nativ R,Geyer S.Water percolation through the deep vadose zone and groundwater recharge:preliminary results based on a new vadose zone monitoring system.Water Resources Research,2007,43(5):W05402.
    [16] Yang W B,Tang J N,Liang H R,Dang H Z,Wei L.Deep soil water infiltration and its dynamic variation in the shifting sandy land of typical deserts in China.Science China Earth Sciences,2014,57(8):1816- 1824.
    [17] 熊伟,王彦辉,程积民,于澎涛.不同植被覆盖条件下土壤水分蒸发的比较.中国水土保持科学,2005,3(3):65- 68.
    [18] 王丁,费良军.层状土壤上升毛管水运移特性试验研究.地下水,2009,31(1):35- 37,66- 66.
    [19] Brown K W,Rosenberg N J.A resistance model to predict evapotranspiration and its application to a sugar beet field.Agronomy Journal,1973,65(3):341- 347.
    [20] 曾亦键,万力,王旭升,曹文炳.浅层包气带地温与含水量昼夜动态的实验研究.地学前缘,2006,13(1):52- 57.
    [21] Green W H,Ampt G A.Studies on soil physics.1.The flow of air and water through soils.Journal of Agricultural Science,1911,4:1- 24.
    [22] Sharma M L,Barron R J W,Craig A B.Land use Effects on Groundwater Recharge to an Unconfined Aquifer.Institute of Natural Resources and Environment,Division of Water Resources,Report No.(91/1),1991.
    [23] 张惠昌.应用“零通量面”方法研究包气带水分的运移规律.兰州大学学报:自然科学版,1988,24(S1):125- 128.
    [24] 李茜,冷俊杰,高佩玲,张石峰.零通量面法用于农田蒸发蒸腾量的研究.干旱区资源与环境,2006,20(2):176- 179.
    [25] Philip J R,De Vries D A.Moisture movement in porous materials under temperature gradients.EOS,Transactions American Geophysical Union,1957,38(2):222- 232.
    [26] Saito H,?im■nek J,Mohanty B P.Numerical analysis of coupled water,vapor,and heat transport in the vadose zone.Vadose Zone Journal,2006,5(2):784- 800.
    [27] Penman H L.Gas and vapour movements in the soil:I.The diffusion of vapours through porous solids.Journal of Agricultural Science,1940,30(3):437- 462.
    [28] Scanlon B R,Levitt D G,Reedy R C,Keese K E,Sully M J.Ecological controls on water-cycle response to climate variability in deserts.Proceedings of the National Academy of Sciences of the United States of America,2005,102(17):6033- 6038.
    [29] Zeng Y J,Wan L,Su Z B,Saito H,Huang K L,Wang X S.Diurnal soil water dynamics in the shallow vadose zone (field site of China University of Geosciences,China).Environmental Geology,2009,58(1):11- 23.
    [30] Banimahd S A,Zand-Parsa S.Simulation of evaporation,coupled liquid water,water vapor and heat transport through the soil medium.Agricultural Water Management,2013,130:168- 177.
    [31] Tokunaga T K.Hydraulic properties of adsorbed water films in unsaturated porous media.Water Resources Research,2009,45(6):W06415.
    [32] Grifoll J,Cohen Y.A front‐tracking numerical algorithm for liquid infiltration into nearly dry soils.Water Resources Research,1999,35(8):2579- 2585.
    [33] Salzmann W,Bohne K,Schmidt M.Numerical experiments to simulate vertical vapor and liquid water transport in unsaturated non-rigid porous media.Geoderma,2000,98(3/4):127- 155.
    [34] Milly P C D.A linear analysis of thermal effects on evaporation from soil.Water Resources Research,1984,20(8):1075- 1085.
    [35] Cahill A T,Parlange M B.On water vapor transport in field soils.Water Resources Research,1998,34(4):731- 739.
    [36] Stone A E C,Edmunds W M.Unsaturated zone hydrostratigraphies:a novel archive of past climates in dryland continental regions.Earth-Science Reviews,2016,157:121- 144.
    [37] Madi R,De Rooij G.Numerical and experimental quantification of coupled water and water vapor fluxes in very dry soils//Proceedings of the EGU General Assembly Conference.Vienna,Austria:EGU,2015.
    [38] Deb S K,Shukla M K,Sharma P,Mexal J G.Coupled liquid water,water vapor,and heat transport simulations in an unsaturated zone of a sandy loam field.Soil Science,2011,176(8):387- 398.
    [39] Bittelli M,Ventura F,Campbell G S,Snyder R L,Gallegati F,Pisa P R.Coupling of heat,water vapor,and liquid water fluxes to compute evaporation in bare soils.Journal of Hydrology,2008,362(3/4):191- 205.
    [40] Walvoord MA,Stonestrom D A,Andraski B J,Striegl R G.Constraining the inferred paleohydrologic evolution of a deep unsaturated zone in the Amargosa Desert.Vadose Zone Journal,2004,3(2):502- 512.
    [41] Syvertsen J P,Cunningham G L,Feather T V.Anomalous diurnal patterns of stem xylem water potentials in larrea tridentata.Ecology,1975,56(6):1423- 1428.
    [42] Warren J M,Brooks J R,Dragila M I,Meinzer F C.In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport.Oecologia,2011,166(4):899- 911.
    [43] Uclés O,Villagarcía L,Cantón Y,Lázaro R,Domingo F.Non-rainfall water inputs are controlled by aspect in a semiarid ecosystem.Journal of Arid Environments,2015,113:43- 50.
    [44] Philip J R.Plant water relations:some physical aspects.Annual Review of Plant Physiology,1966,17:245- 268.
    [45] Vereecken H,Huisman J A,Bogena H,Vanderborght J,Vrugt J A,Hopmans J W.On the value of soil moisture measurements in vadose zone hydrology:a review.Water Resources Research,2008,44(4):W00D06.
    [46] 李红寿,汪万福,郭青林,范宇权,李燕飞.敦煌莫高窟干旱地区水分凝聚机理分析.生态学报,2009,29(6):3198- 3205.
    [47] 李红寿,汪万福,武发思,安黎哲.盐分对极干旱土壤水分垂直分布与运转的影响.土壤,2011,43(5):809- 816.
    [48] Zou C B,Barnes P W,Archer S,Mcmurtry C R.Soil moisture redistribution as a mechanism of facilitation in savanna tree-shrub clusters.Oecologia,2005,145(1):32- 40.
    [49] Dall′Amico M,Endrizzi S,Gruber S,Rigon R.A robust and energy-conserving model of freezing variably-saturated soil.The Cryosphere,2011,5(2):469- 484.
    [50] Lin Y,Horita J.An experimental study on isotope fractionation in a mesoporous silica-water system with implications for vadose-zone hydrology.Geochimica et Cosmochimica Acta,2016,184:257- 271.
    [51] Jiang J M,Zhao L,Zhai Z.Estimating the effect of shallow groundwater on diurnal heat transport in a vadose zone.Frontiers of Earth Science,2016,10(3):513- 526.
    [52] Huang J T,Zhou Y X,Wenninger J,Ma H Y,Zhang J,Zhang D R.How water use of Salix psammophila bush depends on groundwater depth in a semi-desert area.Environmental Earth Sciences,2016,75:556.
    [53] Zeng Y,Su Z,Wan L,Yang Z,Zhang T,Tian H,Shi X,Wang X,Cao W.Diurnal pattern of the drying front in desert and its application for determining the effective infiltration.Hydrology and Earth System Sciences,2009,13(6):703- 714.
    [54] Bouyoucos G.Effect of temperature on the movement of water vapor and capillary moisture in soils.Journal of Agricultural Research,1915,5:141- 172.
    [55] Lebedeff A F.The movement of ground and soil waters.Gravitation,1927,1:40- 44.
    [56] 李佩成.关于"内在水"补给土壤水的假设与初证.灌溉排水学报,2010,29(4):1- 5.
    [57] Walvoord M A,Plummer M A,Phillips F M,Wolfsberg A V.Deep arid system hydrodynamics 1.Equilibrium states and response times in thick desert vadose zones.Water Resources Research,2002,38(12):44- 1- 44- 15.
    [58] Scanlon B R,Keese K,Reedy R C,Simunek J,Andraski B J.Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0- 90 kyr):field measurements,modeling,and uncertainties.Water Resources Research,2003,39(7):1179.
    [59] Andraski B J.Soil‐water movement under natural‐site and waste‐site conditions:A multiple‐year field study in the Mojave Desert,Nevada.Water Resources Research,1997,33(8):1901- 1916.
    [60] Brooks R H.Hydraulic Properties of Porous Media.Fort Collins:Colorado State University Press,1964.
    [61] Van Genuchten M T.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Science Society of America Journal,1980,44(5):892- 898.
    [62] Lehmann P,Assouline S,Or D.Characteristic lengths affecting evaporative drying of porous media.Physical Review.E,Statistical,Nonlinear,and Soft Matter Physics,2008,77(5):056309.
    [63] Shokri N,Or D.What determines drying rates at the onset of diffusion controlled stage‐2 evaporation from porous media?Water Resources Research,2011,47(9):W09513.
    [64] Shokri N,Lehmann P,Or D.Liquid-phase continuity and solute concentration dynamics during evaporation from porous media:pore-scale processes near vaporization surface.Physical Review.E,Statistical,Nonlinear and Soft Matter Physics,2010,81(4):046308.
    [65] 孟春雷,崔建勇.干旱区土壤蒸发及水热耦合运移模式研究.干旱区研究,2007,24(2):141- 145.
    [66] Peters A.Simple consistent models for water retention and hydraulic conductivity in the complete moisture range.Water Resources Research,2013,49(10):6765- 6780.
    [67] Kelly S F,Selker J S.Osmotically driven water vapor transport in unsaturated soils.Soil Science Society of America Journal,2001,65(6):1634- 1641.
    [68] Tokunaga T K.Physicochemical controls on adsorbed water film thickness in unsaturated geological media.Water Resources Research,2011,47(8):W08514.
    [69] Cooper J D.Measurement of Moisture Fluxes in Unsaturated Soil in Thetford Forest.Wallingford:Institute of Hydrology,1980.
    [70] Chorover J,Troch P A,Rasmussen C,Brooks P D,Pelletier J D,Breshears D D,Huxman T E,Kurc S A,Lohse K A,McIntosh J C,Meixner T,Schaap M G,Litvak M E,Perdrial J,Harpold A,Durcik M.How water,carbon,and energy drive critical zone evolution:the Jemez-Santa Catalina critical zone observatory.Vadose Zone Journal,2011,10(3):884- 899.
    [71] Hubbell J M,Nicholl M J,Sisson J B,McElroy D L.Application of a Darcian approach to estimate liquid flux in a deep vadose zone.Vadose Zone Journal,2004,3(2):560- 569.
    [72] Scanlon B R,Reedy R C,Gates J B.Effects of irrigated agroecosystems:1.Quantity of soil water and groundwater in the southern High Plains,Texas.Water Resources Research,2010,46(9):W09537.
    [73] Huxman T E,Snyder K A,Tissue D,Leffler A J,Ogle K,Pockman W T,Sandquist D R,Potts D L,Schwinning S.Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.Oecologia,2004,141(2):254- 268.
    [74] 何丹,马东豪,张锡洲,张佳宝,郑子成.土壤入渗特性的空间变异规律及其变异源.水科学进展,2013,24(3):340- 348.
    [75] Canadell J,Jackson R B,Ehleringer J B,Mooney H A,Sala O E,Schulze E D.Maximum rooting depth of vegetation types at the global scale.Oecologia,1996,108(4):583- 595.
    [76] Chamizo S,Cantón Y,Lázaro R,Solé-Benet A,Domingo F.Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems.Ecosystems,2012,15(1):148- 161.
    [77] 邓建才,卢信,陈效民,王代长,蒋新.封丘地区土壤水分扩散率的研究.土壤通报,2005,36(3):317- 320.
    [78] 冯伟,杨文斌,党宏忠,李卫,石星,王永胜,梁海荣.毛乌素沙地流动沙丘土壤水分对降雨的响应.中国沙漠,2015,35(2):400- 406.
    [79] White R E.The influence of macropores on the transport of dissolved and suspended matter through soil//Stewart B A,ed.Advances in Soil Science.New York,NY:Springer,1985:95- 120.
    [80] Wangemann S G.Elucidation of Preferential Flow Paths in Soils[D].Brooking:South Dakota State University,1994.
    [81] 李卫,冯伟,杨文斌,唐进年,党宏忠.流动沙丘水分深层入渗量与降雨的关系.水科学进展,2015,26(6):779- 786.
    [82] Robinson D A,Campbell C S,Hopmans J W,Hornbuckle B K,Jones S B,Knight R,Ogden F,Selker J,Wendroth O.Soil moisture measurement for ecological and hydrological watershed-scale observatories:a review.Vadose Zone Journal,2008,7(1):358- 389.
    [83] Caldwell M M,Richards J H.Hydraulic lift:water efflux from upper roots improves effectiveness of water uptake by deep roots.Oecologia,1989,79(1):1- 5.
    [84] Burgess S S O,Pate J S,Adams M A,Dawson T E.Seasonal water acquisition and redistribution in the Australian woody phreatophyte,Banksia prionotes.Annals of Botany,2000,85(2):215- 224.
    [85] Ishikawa C M,Bledsoe C S.Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks:evidence for hydraulic lift.Oecologia,2000,125(4):459- 465.
    [86] Ryel R,Caldwell M,Yoder C,Or D,Leffler A.Hydraulic redistribution in a stand of Artemisia tridentata:evaluation of benefits to transpiration assessed with a simulation model.Oecologia,2002,130(2):173- 184.
    [87] Hultine K R,Williams D G,Burgess S S O,Keefer T O.Contrasting patterns of hydraulic redistribution in three desert phreatophytes.Oecologia,2003,135(2):167- 175.
    [88] Mooney H A,Gulmon S L,Rundel P W,Ehleringer J.Further observations on the water relations of Prosopis tamarugo of the northern Atacama Desert.Oecologia,1980,44(2):177- 180.
    [89] Feddes R A,Hoff H,Bruen M,Dawson T,de Rosnay P,Dirmeyer P,Jackson R B,Kabat P,Kleidon A,Lilly A,Pitman A J.Modeling root water uptake in hydrological and climate models.Bulletin of the American Meteorological Society,2001,82(12):2797- 2810.
    [90] Schulze E D,Caldwell M M,Canadell J,Mooney H A,Jackson R B,Parson D,Scholes R,Sala O E,Trimborn P.Downward flux of water through roots (i.e.inverse hydraulic lift) in dry Kalahari sands.Oecologia,1998,115(4):460- 462.
    [91] Smith D M,Jackson N A,Roberts J M,Ong C K.Reverse flow of sap in tree roots and downward siphoning of water by Grevillea robusta.Functional Ecology,1999,13(2):256- 264.
    [92] Burgess S S O,Adams M A,Turner N C,Beverly C R,Ong C K,Khan A A H,Bleby T M.An improved heat pulse method to measure low and reverse rates of sap flow in woody plants.Tree Physiology,2001,21(9):589- 598.
    [93] McCulley R L,Jobb?gy E G,Pockman W T,Jackson R B.Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems.Oecologia,2004,141(4):620- 628.
    [94] Dirksen D.Water Movement and Frost Heaving in Unsaturated Soil without an External Source of Water[D].Ithaca:Cornell University,1964.
    [95] Wu J Y.Heat and Mass Transfer in Freezing Unsaturated Soil[D].Saskatoon,Saskatchewan:University of Saskatchewan,1977.
    [96] Collins S L,Sinsabaugh R L,Crenshaw C,Green L,Porras-Alfaro A,Stursova M,Zeglin L K.Pulse dynamics and microbial processes in aridland ecosystems.Journal of Ecology,2008,96(3):413- 420.
    [97] Meinzer F C,Brooks J R,Bucci S,Goldstein G,Scholz F G,Warren J M.Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types.Tree Physiology,2004,24(8):919- 928.
    [98] Abid Karray J,Lhomme J P,Masmoudi M M,Mechlia N B.Water balance of the olive tree-annual crop association:a modeling approach.Agricultural Water Management,2008,95(5):575- 586.
    [99] Wildy D T,Pate J S,Bartle J R.Budgets of water use by Eucalyptus kochii tree belts in the semi-arid wheatbelt of Western Australia.Plant and Soil,2004,262(1/2):129- 149.
    [100] Crosbie R S,Wilson B,Hughes J D,McCulloch C,King W M.A comparison of the water use of tree belts and pasture in recharge and discharge zones in a saline catchment in the Central West of NSW,Australia.Agricultural Water Management,2008,95(3):211- 223.
    [101] Miller G R,Cable J M,McDonald A K,Bond B,Franz T E,Wang L X,Gou S,Tyler A P,Zou C B,Scott R L.Understanding ecohydrological connectivity in savannas:a system dynamics modelling approach.Ecohydrology,2012,5(2):200- 220.
    [102] Shen Q,Gao G Y,Fu B J,Lü Y H.Soil water content variations and hydrological relations of the cropland-treebelt-desert land use pattern in an oasis-desert ecotone of the Heihe River Basin,China.Catena,2014,123:52- 61.
    [103] Stratford C J,Robins N S,Clarke D,Jones L,Weaver G.An ecohydrological review of dune slacks on the west coast of England and Wales.Ecohydrology,2013,6(1):162- 171.
    [104] Yi J,Zhao Y,Shao M A,Li H J,Jiang R,Hill R L,Si B C.Hydrological processes and eco-hydrological effects of farmland-forest-desert transition zone in the middle reaches of Heihe River Basin,Gansu,China.Journal of Hydrology,2015,529:1690- 1700.
    [105] Zhang K C,An Z S,Cai D W,Guo Z C,Xiao J H.Key role of desert-oasis transitional area in avoiding oasis land degradation from Aeolian desertification in Dunhuang,northwest China.Land Degradation & Development,2017,28(1):142- 150.
    [106] Xiao Q L,Huang M B.Fine root distributions of shelterbelt trees and their water sources in an oasis of arid northwestern China.Journal of Arid Environments,2016,130:30- 39.
    [107] 张平,吴昊,殷洪建,李宝刚,王海坤.土壤构造对毛细管水上升影响的研究.水土保持研究,2011,18(4):265- 267.
    [108] 史文娟,汪志荣,沈冰,宋孝玉.夹砂层土体构型毛管水上升的实验研究.水土保持学报,2004,18(6):167- 170.
    [109] Jorenush M H,Sepaskhah A R.Modelling capillary rise and soil salinity for shallow saline water table under irrigated and non-irrigated conditions.Agricultural Water Management,2003,61(2):125- 141.
    [110] 陈亚宁,李卫红,陈亚鹏,周洪华,郝兴明,朱成刚.荒漠河岸林建群植物的水分利用过程分析.干旱区研究,2018,35(1):130- 136.
    [111] Bekele E G,Knapp H V.Watershed modeling to assessing impacts of potential climate change on water supply availability.Water Resources Management,2010,24(13):3299- 3320.
    [112] Vinnikov K Y,Robock A,Qiu S,Entin J K,Owe M,Choudhury B J,Hollinger S E,Njoku E G.Satellite remote sensing of soil moisture in Illinois,United States.Journal of Geophysical Research:Atmospheres,2001,104(D4):4145- 4168.
    [113] Moran M S,Peters-Lidard C D,Watts J M,McElroy S.Estimating soil moisture at the watershed scale with satellite-based radar and land surface models.Canadian Journal of Remote Sensing,2004,30(5):805- 826.
    [114] Vereecken H,Huisman J A,Bogena H,Vanderborght J,Vrugt J A,Hopmans J W.On the value of soil moisture measurements in vadose zone hydrology:a review.Water Resources Research,2008,44(4):W00D06.
    [115] Risi C,Bony S,Vimeux F,Jouzel J.Water-stable isotopes in the LMDZ4 general circulation model:Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records.Journal of Geophysical Research:Atmospheres,2010,115(D12):D12118.
    [116] Yoshimura K,Miyazaki S,Kanae S,Oki T.Iso-MATSIRO,a land surface model that incorporates stable water isotopes.Global and Planetary Change,2006,51(1/2):90- 107.
    [117] Thomas Z,Ghazavi R,Merot P,Granier A.Modelling and observation of hedgerow transpiration effect on water balance components at the hillslope scale in Brittany.Hydrological Processes,2012,26(26):4001- 4014.