再生水补给河流北运河COD_(Cr)降解系数变化及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:COD_(Cr) degradation coefficient of urban river recharged with reclaimed water and its impacting factors
  • 作者:张培培 ; 吴艺帆 ; 庞树江 ; 王晓燕 ; 杜伊
  • 英文作者:ZHANG Peipei;WU Yifan;PANG Shujiang;WANG Xiaoyan;DU Yi;College of Resource Environment and Tourism,Capital Normal University;Research Center of Aquatic Environment in the Capital Region,Capital Normal University;
  • 关键词:再生水 ; CODCr降解 ; 水体自净 ; 降解因素 ; 北运河
  • 英文关键词:Urban reclaimed water;;water self-purification;;degradation of CODCr;;degradation factors;;Beiyun River
  • 中文刊名:湖泊科学
  • 英文刊名:Journal of Lake Sciences
  • 机构:首都师范大学资源环境与旅游学院;首都师范大学首都圈水环境研究中心;
  • 出版日期:2019-01-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:01
  • 基金:北京市自然科学基金委员会-北京市教育委员会联合资助重点项目(KZ201810028047);; 科技创新服务能力建设-基本科研业务费(科研类)(025185305000/149);; 国家自然科学基金项目(41271495)联合资助
  • 语种:中文;
  • 页:101-114
  • 页数:14
  • CN:32-1331/P
  • ISSN:1003-5427
  • 分类号:X52
摘要
化学需氧量(COD)是影响地表水体水质的主要污染指标.明确地表水中COD的降解系数,可为把握有机物污染过程变化以及有效控制污染提供科学依据.北运河是城市再生水河流,COD污染严重.以北运河从上游至下游的5个典型断面(马坊桥、火沙路、东关大桥、榆林庄桥、杨洼闸)为例,通过室内模拟实验,估算了不同断面COD_(Cr)降解系数,并对COD_(Cr)降解系数进行校正;测定了颗粒物沉降速率、复氧系数,评估了水体自净能力;分析了不同环境条件(温度、溶解氧、流速)对COD_(Cr)的降解影响.结论如下:北运河水体自净能力较差,颗粒物沉降速率范围为1.09~3.22 m/d,杨洼闸断面颗粒物沉降速率最低为1.09 m/d,其复氧系数偏低,为0.016 d~(-1).北运河水体COD_(Cr)降解系数符合一级动力学方程;经水力、温度经验公式校正后,COD_(Cr)降解系数范围为0.0184~0.0883 d~(-1),低于我国其他平原地区河流.北运河COD_(Cr)降解系数存在明显的空间差异性,上游断面的降解系数高于下游断面,不过下游北京界最后出水断面杨洼闸表现出闸坝特殊性,降解系数最高(0.0416~0.0883 d-1).水质参数中温度、溶解氧、氧化还原电位、营养盐以及总有机碳是COD_(Cr)降解系数的主要影响因子. COD_(Cr)降解系数随着温度、溶解氧、外源动力增加而增大; COD_(Cr)降解系数与营养盐、TOC呈显著正相关,与氧化还原电位呈显著负相关.研究结果可为我国相关城市再生水体水质改善和城市黑臭水体治理提供科学依据.
        Chemical oxygen demand( COD) is one of the major indicators of surface water pollution in China. Degradation coefficient of pollutant may provide scientific basis for understanding the process of organic polluter change and effective pollution control. As a typical urban river recharged with reclaimed water,Beiyun River is at very serious state of COD pollution. In this research,five typical sections from upstream to downstream( Mafang Bridge,Huosha Road,Dongguan Bridge,Yulinzhuang Bridge and Yangwa Sluice) on Beiyun River were selected for estimating COD_(Cr) degradation coefficients and calibration by laboratory simulation experiments. Taking the section of Yangwa sluice as a typical example,the sedimentation rate and reoxygenation coefficient were measured on site to evaluate water self-purification ability. Then the impacts of different environmental factors( temperature,dissolved oxygen and flow rate) on COD_(Cr) degradation were discussed based on laboratory simulation experiments. The conclusions were summarized as follows: The water purifying ability of Beiyun River was very low. The sedimentation rates ranged from 1.59 to3.22 m/d,among which,the lowest rate was in Yangwa Sluice with a reoxygenation coefficient of 0. 016 d-1. The variation of COD_(Cr) degradation coefficients conformed to the first-order kinetic equation,ranging from 0.0184 d-1to 0.0883 d-1corrected by the hydraulic and temperature condition. The COD_(Cr) degradation coefficients showed significant spatial variation. The degradation coefficients of upstream sections was higher than that of downstream sections,except Yangwa Sluice( last section of Beijing at downstream) as the highest( 0.0416-0.0883 d-1),showing the characteristics of the sluice. Water quality parameters such as temperature,dissolved oxygen,redox potential( ORP),nutrients,and total organic carbon( TOC) were the main influence factors. The COD_(Cr) degradation coefficients increased with the temperature,dissolved oxygen and flow rate. In addition,COD_(Cr) degradation coefficient was positively related to nutrients and TOC,but negatively to ORP. The results of this study can provide a scientific reference for urban river improvement and pollution control.
引文
[1] Dan D. Study on budget of ammonia degradation coefficent of Beiyun River[Dissertation]. Beijing:Normal Capital University,2013.[单铎.北运河氨氮降解系数测算研究[学位论文].北京:首都师范大学,2013.]
    [2] Pu XC,Li KF,Li J et al. The effect of turbulence in water body on organic compound bildegradation. China Environmental Science,1999,19(6):485-489.[蒲迅赤,李克锋,李嘉等.紊动对水体中有机物降解影响的实验.中国环境科学,1999,19(6):485-489.]
    [3] Ministry of Environmental Protection of the People’s Republic of China ed. Water pollution prevention and control plan for key watersheds. Energy Conservation and Environmental Protection,2017.[中华人民共和国环境保护部.重点流域水污染防治规划(2016-2020年).节能与环保,2017.]
    [4] Ma J. Research on the non-point source pollution characteristics analysis and control and management of Huaihe Basin[Dissertation]. Beijing:Tsinghua University,2013.[马静.淮河流域面源污染特征分析与控制策略研究[学位论文].北京:清华大学,2013.]
    [5] Zhu M. Study on agriculture NPS loads of Haihe Basin and assessment on its environmental impact[Dissertation]. Beijing:Chinese Academy of Agricultural Sciences,2011.[朱梅.海河流域农业非点源污染负荷估算与评价研究[学位论文].北京:中国农业科学院,2011.]
    [6] Ministry of Environmental Protection of the People’s Republic of China ed. Energy conservation and comprehensive emission reduction. China Environment New,2017.[中国人民共和国环境保护部.十三五节能减排综合工作方案.中国环境报,2017.]
    [7] Dai AQ. Calculation method and application of land-based TN and COD pollutants allocated capacity index system in Bohai Sea[Dissertation]. Qingdao:Ocean University of China,2015.[戴爱泉.渤海陆源TN和COD污染物分配容量指标体系计算方法及应用[学位论文].青岛:中国海洋大学,2015.]
    [8] Feng S,Li XY,Deng JC. Biodegradation coefficients of typical pollutants in the plain rivers network. Environmental Science,2016,37(5):1724-1733.[冯帅,李叙勇,邓建才.平原河网典型污染物生物降解系数的研究.环境科学,2016,37(5):1724-1733.]
    [9] Yu Y,Wu J,Wang XY et al. Degradation of inorganic nitrogen in Beiyun River of Beijing,China. Procedia Environmental Sciences,2012,13:1069-1075. DOI:10.1016/j.proenv.2012.01.100.
    [10] Wang X,Zhang Y,Zhang M. Fate of COD and ammonia-nitrogen in a highly stressed watercourse in Northern China:the Zhangweinan Canal basin. Water International,2011,7(36):937-947.
    [11] Lincheva S,Todorova Y,Topalova Y. Long-term assessment of the self-purification potential of a technologically managed ecosystem:the Middle Iskar cascade. Biotechnology&Biotechnological Equipment,2014,28(3):455-462.
    [12] Tao W,Liu Y,Ren YR. Study on ammonia nitrogen degradation coefficient in Yibin section of Yangtze River. Pollution Control Technology,2009,22(6):8-9.[陶威,刘颖,任怡然.长江宜宾段氨氮降解系数的实验室研究.污染防治技术,2009,22(6):8-9.]
    [13] Feng S,Li XY,Deng JC. Determination of comprehensive pollutants attenuation coefficients of the plain river networks in the upper reaches of Lake Taihu Basin. Acta Scientiae Circumstantiae,2017,(3):878-887.[冯帅,李叙勇,邓建才.太湖流域上游平原河网污染物综合衰减系数的测定.环境科学学报,2017,(3):878-887.]
    [14] Wei G,Yang Z,Cui B et al. Impact of dam construction on water quality and water self-purification capacity of the Lancang River,China. Water Resources Management,2009,23(9):1763-1780. DOI:10.1007/s11269-008-9351-8.
    [15] Chen Y,Liu Y,Zhou Q et al. Enhanced phosphorus biological removal from waste water effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture. Biochemical Engineering Journal,2005,27(1):24-32. DOI:10.1016/j.bej.2005.06.003.
    [16] Zhang R,Liu C,Gu Y et al. Evaluation method of water ecological restoration technologies in urban river and lake supplied by reclaimed water established by analytical hierarchy:Establishing and application. Chinese Journal of Environmental Engineering,2017,11(6):3545-3554.
    [17] Jing HW,Zhang ZG,Guo J. Water pollution characteristics and pollution sources of Bei Canal river system in Beijing. China Environmental Science,2013,33(2):319-327.[荆红卫,张志刚,郭婧.北京北运河水系水质污染特征及污染来源分析.中国环境科学,2013,33(2):319-327.]
    [18] Guo J,Jing HW,Li JX et al. Surface water quality of Beiyun Rivers basin and the analysis of acting factors for the recent ten years. Environmental Science,2012,33(5):1511-1518.[郭婧,荆红卫,李金香等.北运河系地表水近10年来水质变化及影响因素分析.环境科学,2012,33(5):1511-1518.]
    [19] Du Y,Hu WX,Wang XY et al. Concentrations of chemical oxygen demand fractions and their biodegradability in waters of Beiyun River,Beijing. Wetland Science,2017,15(3):470-477.[杜伊,胡玮璇,王晓燕等.北京市北运河水体中化学需氧量组分含量及其可生化性研究.湿地科学,2017,15(3):470-477.]
    [20] Chen YJ,Pang SJ,Geng RZ et al. Fluxes of the main contaminant in Beiyun River. Acta Scientiae Circumstantiae,2015,35(7):2167-2176.[陈永娟,庞树江,耿润哲等.北运河水系主要污染物通量特征研究.环境科学学报,2015,35(7):2167-2176.]
    [21] Chen YJ,Hu WX,Pang SJ et al. Spatial distribution characteristics and source analysis of dissolved organic matter in Beiyun River. Environmental Science,2016,37(8):3017-3025.[陈永娟,胡玮璇,庞树江等.北运河水体中荧光溶解性有机物空间分布特征及来源分析.环境科学,2016,37(8):3017-3025.]
    [22] Beijing North Canal Administration Office ed. The North Canal floods and droughts. Beijing:Water Power Press,2003.[北京市北运河管理处.北运河水旱灾害.北京:中国水利水电出版社,2003.]
    [23] Ji LN,Yu HZ,Liu Y et al. Analysis on the water resources of north canal from 2010 to 2011. Beijing Water,2016,(3):9-11.[吉利娜,于海柱,刘勇等.北运河2010-2011年水资源量调查成果分析.北京水务,2016,(3):9-11.]
    [24] Cai M. Project cost control on the east reverside road of the Tongzhou North Canal[Dissertation]. Beijing:Beijing University of Chemical Technology,2015.[蔡猛.通州区北运河东滨河路项目成本控制研究[学位论文].北京:北京化工大学,2015.]
    [25] Beijing Municipal Environmental Protection Bureau. Beijing environmental statement 2016. Beijing Municipal Environmental Protection Bureau,2017.[北京环境保护局. 2016年北京市环境保护公告.北京环境保护局,2017.]
    [26] Simon M,Grossart HP,Schweitzer B et al. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecl,2002,(28):175-211.
    [27] Turner JT. Zooplankton fecal pellets,marine snow and sinking phytoplankton blooms. Aquat Microb Ecol,2002,(27):57-102.
    [28] Wang L. Research on reoxygenation behavior characteristics of wave[Dissertation]. Qingdao:Ocean University of China,2012.[王乐.波浪作用下水体复氧行为特性研究[学位论文].青岛:中国海洋大学,2012.]
    [29] Freitas PS,Abrantes F. Suspended particulate matter in the Mediterranean water at the Gulf of Cadiz and off the southwest coast of the Iberian Peninsula. Deep Sea Research Part II Topical Studies in Oceanograph,2002,49(19):4245-4261.
    [30] Cao J,Liu JH,Chu ZS et al. The effect of suspended particulates in Poyang Lake on the growth and flocculation of three kinds of algae. Acta Scientiae Circumstantiae,2015,35(5):1318-1324.[曹晶,刘建辉,储昭升等.鄱阳湖水体颗粒物对3种典型藻类的生长及絮凝作用.环境科学学报,2015,35(5):1318-1324.]
    [31] Ebel W,Raymond H. Effect of atmospheric gas supersaturation on salmon and steelhead trout of the'Snake and Columbia Rivers. Symposium on Reaeration Research,1976,7(38):1-14.
    [32] Luo WS,Li LH,He T. Advances and prospects in the research of water reaeration theory and reaeration coeff icient. Journal of Hydraulic Engineering,2003,(11):64-70.[雒文生,李莉红,贺涛.水体大气复氧理论和复氧系数研究进展与展望.水利学报,2003,(11):64-70.]
    [33] Lei P ed. Probability and mathematical statistics. Shanghai:Lixin Accountant Press,2012.[雷平.概率论与数理统计.上海:立信会计出版社,2012.]
    [34] Li ZH,Luo P eds. PASW/SPSS Statistics Chinese statistical analysis tutorial. Beijing:Publishing House of Electronics Industry,2003.[李志辉,罗平. PASW/SPSS Statistics中文版统计分析教程.北京:电子工业出版社,2003.]
    [35] Cheng Z. Research on several key technologies of Partial Least Squares Regression in chemistry and chemical process modeling[Dissertation]. Hangzhou:Zhe Jiang University,2005.[成忠. PLSR用于化学化工建模的几个关键问题的研究[学位论文].杭州:浙江大学,2005.]
    [36] Tan K,Chen QW,Mao JQ et al. The self-purification capacity of the outlet of Daqinghe River:experiment. Acta Ecologica Sinica,2007,27(11):4736-4742.[谭夔,陈求稳,毛劲乔等.大清河河口水体自净能力实验.生态学报,2007,27(11):4736-4742.]
    [37] Zhang W,Zhang H,Dan BQ. Characteristics of heavy metal pollution in the sediments from Shahe Reservoir,the upper reach of the North Canal River. Environmental Science,2012,33(12):4284-4290. DOI:10.13227/j.hjkx.2012.12.036.[张伟,张洪,单保庆.北运河源头区沙河水库沉积物重金属污染特征研究.环境科学,2012,33(12):4284-4290.]
    [38] Chen H,Zuo QT,Dou M et al. Comprehensive experimental research on impacts of dam operation on water environment of polluted river. Acta Scientiae Circumstantiae,2014,34(3):763-771.[陈豪,左其亭,窦明等.闸坝调度对污染河流水环境影响综合实验研究.环境科学学报,2014,34(3):763-771.]
    [39] Matthew G,Mesa LK,Weiland A. Progression and severity of gas bubble trauma in Juvenile Salmonids. Transactions of theAmerican Fisheries Society,2000,129(1):174-185.
    [40] Deng SS. Dissolved oxygen in lowland Jiaxing river[Dissertation]. Hangzhou:Zhejiang University,2013.[邓思思.嘉兴平原河网溶解氧平衡研究[学位论文].杭州:浙江大学,2013.]
    [41] Guo R,Li YB,Fu G. Controlling factors of degradation coefficient on organic pollutant in river. Journal of Meteorology and Environment,2008,24(1):56-59.[郭儒,李宇斌,富国.河流中污染物衰减系数影响因素分析.气象与环境学报,2008,24(1):56-59.]
    [42] Zhou QY,Wang SF eds. Environmental engineering microbiology. Beijing:Higher Education Press,2008.[周群英,王士芬.环境工程微生物学.北京:高等教育出版社,2008.]
    [43] Peng YL,Ma CY eds. Treatment and control of high concentration of difficult-degradable organic wastewater. Beijing:Chemical Industry Press,2006.[彭英利,马承愚.高浓度难降解有机废水的治理与控制.北京:化学工业出版社,2006.]
    [44] Yu Y,Wang XY,Zhang PF. Spatial distribution of planktonic bacterial community and its relationship to water quality in Beiyun River. Asian Journal of Ecotoxicology,2012,7(3):337-344.[于洋,王晓燕,张鹏飞.北运河水体浮游细菌群落的空间分布特征及其与水质的关系.生态毒理学报,2012,7(3):337-344.]
    [45] Pitter P. Determination of biological biodegradability of organic sunstances. Water Research,1976,10(2):231-235.
    [46] Cheng H,Ye QZ,Tan SX et al. Influential factors on degradation rate of organic contamination in water treatment by discharge plasma. High Voltage Engineering,2007,33(2):150-153.[程虎,叶齐政,覃世勋等.放电等离子体水处理中有机物的降解速率.高电压技术,2007,33(2):150-153.]
    [47] Qian Y,Tang HX,Wen XH eds. The characteristics of water particles and refractory organics and the principle of control technology. Beijing:China Environmental Science Press,2000.[钱易,汤鸿宵,文湘华等.水体颗粒物和难降解有机物的特性与控制技术原理.北京:中国环境科学出版社,2000.]
    [48] Lin Y,Li D,Zeng S et al. Changes of microbial composition during wastewater reclamation and distribution systems revealed by high-throughput sequencing analyses. Frontiers of Environmental Science&Engineering,2016,10(3):539-547.
    [49] Rusmi MHS. Removal of chemical oxygen demand(COD),total organicchemical(TOC)and total suspended solids(TSS)usinganaerobic and aerobic degradation of pharmaceutical waster water. Universiti Teknologi Petronas,2007.
    [50] Dong J. Study of landfill leachate redox zones and degradation mechanisms of pollutants in the subsurface environment[Dissertation]. Changchun:Jilin University,2006.[董军.垃圾渗滤液在地下环境中的氧化还原分带及污染物的降解机理研究[学位论文].长春:吉林大学,2006.]
    [51] Zhou HL. Ecological sluice mode for reconstruction of Yulinzhuang Sluice of Beiyun River. Beijing Water,2006,(4):17-19.[周洪利.北运河榆林庄闸重建的生态水闸模式.北京水务,2006,(4):17-19.]
    [52] Guo DP,Xu MD. The degradation rule of COD In South Yellow Sea. Journal of Tayuan University of Technology,2008,39(4):358-361.[郭栋鹏,徐明德.黄海南部海水中COD降解规律的研究.太原理工大学学报,2008,39(4):358-361.]
    [53] Zhang ZM,Wang XY,Ma WJ et al. The effects of global warming on purification processes of Tongzhou section of Beiyun river. China Environment Science,2017,37(2):730-739.[张质明,王晓燕,马文林等.未来气候变暖对北运河通州段自净过程的影响.中国环境科学,2017,37(2):730-739.]
    [54] Mbuligwe SE,Kaseva ME. Pollution and self-cleansing of an urban river in a developing country:A case study in Dar es Salaam. Tanzania Environmental Management,2005,36(2):328-342. DOI:10.1007/s00267-003-0068-4.
    [55] Obst U. Strategies of maintaining the natural purification potential of rivers and lakes. Environmental Science&Pollution Research International,2003,10(4):251-255.
    [56] Hariyadi S. A study on dissolved oxygen and its relation to organic matter load in the Cisadane River estuary. Ipb,2011.
    [57] Hua ZL,Li YW,Gu L. A mixed-order model of CODMndegradation in different lake regions. Journal of Hydraulic Engineering,2013,35(5):521-526.[华祖林,李亚伟,顾莉.湖泊不同湖区COD_(Mn)降解的混合级数模型.水利学报,2013,35(5):521-526.]