用户名: 密码: 验证码:
酸浸-分步萃取法从赤泥中回收铁和稀土(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach
  • 作者:张雪凯 ; 周康根 ; 陈伟 ; 雷清源 ; 黄颖 ; 彭长宏
  • 英文作者:ZHANG Xue-kai;ZHOU Kang-gen;CHEN Wei;LEI Qing-yuan;HUANG Ying;PENG Chang-hong;School of Metallurgy and Environment, Central South University;
  • 关键词:赤泥 ; ; 稀土元素 ; 浸出 ; 溶剂萃取
  • 英文关键词:red mud;;iron;;rare earth elements;;leaching;;solvent extraction
  • 中文刊名:Journal of Central South University
  • 英文刊名:中南大学学报(英文版)
  • 机构:School of Metallurgy and Environment, Central South University;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Central South University
  • 年:2019
  • 期:02
  • 基金:Project(21707167)supported by the Natural Science Foundation of China
  • 语种:英文;
  • 页:198-206
  • 页数:9
  • CN:43-1516/TB
  • ISSN:2095-2899
  • 分类号:X758
摘要
提出了一种"酸浸-配位萃取"选择性回收赤泥中的铁和稀土的新工艺。浸出过程表明,在优化条件下,Fe、Al、Ti、Sc、La、Ce、Nd和Y的浸出率分别可达95.9%,82.1%,68.3%,93.3%,82.3%,96.9%,98.3%和95.6%。Aliquat 336在高氯体系下表现出良好的萃铁性能,以30%Aliquat 336+15%仲辛醇+55%煤油为萃取有机相对浸出液中的铁进行萃取,在相比为1,萃取时间为20 min的条件下,铁单级萃取率可达95.7%,各稀土元素损失率不足10%,铁和稀土有较好的分离效果。以P204对萃铁后液中的钪进行回收,可以将钪富集在萃取剂中与Al和大部分稀土元素分离。
        A feasible approach to selectively recover iron and rare earth elements(REEs) from red mud through acid leaching-coordination-solvent extraction was proposed. The leaching efficiencies of Fe, Al, Ti, Sc, La, Ce, Nd and Y can reach up to 95.9%, 82.1%, 68.3%, 93.3%, 82.3%, 96.9%, 98.3% and 95.6%, respectively, under the optimal condition in the leaching process. Aliquat 336 showed excellent extraction performance of iron in chloride-rich solution,and the maximum extraction efficiency can reach over 96% in one time extraction while the loss of other metals was less than 10%, under the condition of Aliquat 336 concentration(v/v) of 30%, aqueous-organic ratio of 1.0 and extraction time of 20 min. Furthermore, P204 can effectively extract the scandium while Al and most other REEs remain in the aqueous phase. This approach may provide a new insight for the recovery of valuable resources from red mud.
引文
[1]XUE Sheng-guo,KONG Xiang-feng,ZHU Feng,HARTLEY W,LI Xiao-fei,LI Yi-wei.Proposal for management and alkalinity transformation of bauxite residue in China[J].Environmental Science and Pollution Research,2016,23(13):12822-12834.DOI:10.1007/s11356-016-6478-7.
    [2]KONG Xiang-feng,TIAN Tao,XUE Sheng-guo,HARTLEY W,HUANG Long-bin,WU Chuan,LI Chu-xuan.Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation[J].Land Degradation&Development,2018,29(1):58-67.DOI:10.1002/ldr.2836.
    [3]WANG Meng,HU Hui-ping,LIU Jin-wei,CHEN Qi-yuan.Negative effect of dissolved organic compounds on settling behavior of synthetic monominerals in red mud[J].Journal of Central South University,2016,23(7):1591-1602.DOI:10.1007/s11771-016-3213-y.
    [4]LIU Zhao-bo,LI Hong-xu.Metallurgical process for valuable elements recovery from red mud-A review[J].Hydrometallurgy,2015,155:29-43.DOI:10.1016/j.hydromet.2015.03.018.
    [5]KONG Xiang-feng,JIANG Xing-xing,XUE Sheng-guo,HUANG Ling,HARTLEY W,WU Chuan,LI Xiao-fei.Migration and distribution of saline ions in bauxite residue during water leaching[J].Transactions of Nonferrous Metals Society of China,2018,28(3):534-541.DOI:10.1016/S1003-6326(18)64686-2.
    [6]ZHU Feng,HOU Jing-tao,XUE Sheng-guo,WU Chuan,WANG Qiong-li,HARTLEY W.Vermicompost and gypsum amendments improve aggregate formation in bauxite residue[J].Land Degradation&Development,2017,28(7):2109-2120.DOI:10.1002/ldr.2737.
    [7]XUE Sheng-guo,ZHU Feng,KONG Xiang-feng,WUChuan,HUANG Ling,HUANG Nan,HARTLEY W.Areview of the characterization and revegetation of bauxite residues(red mud)[J].Environmental Science and Pollution Research,2016,23(2):1120-1132.DOI:10.1007/s11356-015-4558-8.
    [8]ZHU Feng,LIAO Jia-xin,XUE Sheng-guo,HARTLEY W,ZOU Qi,WU Hao.Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography[J].Science of the Total Environment,2016,573:155-163.DOI:10.1016/j.scitotenv.2016.08.108.
    [9]ZHU Feng,CHENG Qing-yu,XUE Sheng-guo,LI Chu-xuan,HARTLEY W,WU Chuan.TIAN Tao.Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas[J].Land Degradation and Development,2018,29(1):138-149.DOI:10.1002/ldr.2848.
    [10]XUE Sheng-guo,YE Yu-zhen,ZHU Feng,WANHGQiong-li,JIANG Jun,HARTLEY W.Changes in distribution and microstructure of bauxite residue aggregates following amendments addition[J].Journal of Environmental Sciences,2019,78:276-286.DOI:10.1016/j.jes.2018.10.010.
    [11]LIU Wan-chao,YANG Jia-kuan,XIAO Bo.Review on treatment and utilization of bauxite residues in China[J].International Journal of Mineral Processing,2009,93(3,4):220-231.DOI:10.1016/j.minpro.2009.08.005.
    [12]XUE Sheng-guo,LI Meng,JIANG Jun,MILLAR G J,LIChu-xuan,KONG Xiang-feng.Phosphogypsum stabilization of bauxite residue:Conversion of its alkaline characteristics[J].Journal of Environmental Sciences,2019,77:1-10.DOI:10.1016/j.jes.2018.05.016.
    [13]VINCENZO M S,RENZO C,STEFANO M,GIOVANNI C,MARZIO M,GEROLAMO B,GIORGIO C.Bauxite‘red Mud’in the ceramic industry.Part 1:Thermal behaviour[J].Journal of the European Ceramic Society,2000,20(3):235-244.DOI:10.1016/S0955-2219(99)00088-6.
    [14]LIU Jin-wei,HU Hui-ping,WANG Meng,CHEN Xiang-pan,CHEN Qi-yuan,DING Zhi-ying.Synthesis of modified polyacrylamide with high content of hydroxamate groups and settling performance of red mud[J].Journal of Central South University,2015,22(6):2073-2080.DOI:10.1007/s11771-015-2731-3.
    [15]LIAO Jia-xin,JIANG Jun,XUE Sheng-guo,CHENGQing-yu,WU Hao,RAJENDRAN M,HARTLEY W,HUANG Long-bin.A novel acid-producing fungus isolated from bauxite residue:the potential to reduce the alkalinity[J].Geomicrobiology Journal,2018,35(10):840-847.DOI:10.1080/01490451.2018.1479807.
    [16]ZHU Feng,ZHOU Jia-yi,XUE Sheng-guo,HARTLEY W,WU Chuan,GUO Ying.Aging of bauxite residue in association of regeneration:a comparison of methods to determine aggregate stability&erosion resistance[J].Ecological Engineering,2016,92:47-54.DOI:10.1016/j.ecoleng.2016.03.025.
    [17]LI Guang-hui,LIU Ming-xia,RAO Ming-jun,JIANG Tao,ZHUANG Jin-qiang,ZHANG Yuan-bo.Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts[J].Journal of Hazardous Materials,2014,280:774-780.DOI:10.1016/j.jhazmat.2014.09.005.
    [18]DENG Bo-na,LI Guang-hui,LUO Jun,YE Qing,LIUMing-xia,PENG Zhi-wei,JIANG Tao.Enrichment of Sc2O3and TiO2 from bauxite ore residues[J].Journal of Hazardous Materials,2017,331:71-80.DOI:10.1016/j.jhazmat.2017.02.022.
    [19]YANG Yang,WANG Xue-wen,WANG Ming-yu,WANGHua-guang,XIAN Peng-fei.Recovery of iron from red mud by selective leach with oxalic acid[J].Hydrometallurgy,2015,157:239-245.DOI:10.1016/j.hydromet.2015.08.021.
    [20]YANG Yang,WANG Xue-wen,WANG Ming-yu,WANGHua-guang,XIAN Peng-fei.Iron recovery from the leached solution of red mud through the application of oxalic acid[J].International Journal of Mineral Processing,2016,157:145-151.DOI:10.1016/j.minpro.2016.11.001.
    [21]LI Bo-ji,XIE Ying-bang,FAN Yan-jin,LIU Chen,HEHang-jun.Recovery of aluminum from blast furnace slag of red mud ironmaking process[J].Hydrometallurgy of China,2015,34(4):328-330.(in Chinese)
    [22]WU Wen-yuan,LI Dong,ZHAO Zhi-hua,CHEN Jian-li,ZHANG Feng-yun,YIN Shao-hua,QIAN Mei-li,BIAN Xue.Formation mechanism of micro emulsion on aluminum and lanthanum extraction in P507-HCl system[J].Journal of Rare Earths,2010,28(s1):174-178.DOI:10.1016/S1002-0721(10)60314-6.
    [23]VACHON P,TYAGI R D,AUCLAIR J C,WILKINSON KJ.Chemical and biological leaching of aluminum from red mud[J].Environmental Science&Technology,1994,28(1):26-30.DOI:10.1021/es00050a005.
    [24]DITZE A,KONGOLO K.Recovery of scandium from magnesium,aluminum and iron scrap[J].Hydrometallurgy,1997,44(1):179-184.DOI:10.1016/S0304-386X(96)00041-2.
    [25]AKCIL A,AKHMADIYEVA N,ABDULVALIYEV R,ABHILASH,MESHRAM P.Overview on extraction and separation of rare earth elements from red mud:focus on scandium[J].Mineral Processing and Extractive Metallurgy Review,2017,39(3):1-7.DOI:10.1080/08827508.2017.1288116.
    [26]CHANG Yong-feng,ZHAI Xiu-jing,LI Bin-chuan,FU Yan.Removal of iron from acidic leach liquor of lateritic nickel ore by goethite precipitate[J].Hydrometallurgy,2010,101(1,2):84-87.DOI:10.1016/j.hydromet.2009.11.014.
    [27]LIU Zhi-xiong,YIN Zhou-lan,CHEN Yi-guang,XIONGLi-zhi.Leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate as oxidant[J].Journal of Central South University,2015,22(3):874-879.DOI:10.1007/s11771-015-2596-5.
    [28]ZHU Qing.Stabilization on cadmium soil using modified silicon activated red mud based material[D].Changsha:Hunan Agricultural University,2016.(in Chinese)
    [29]CUI Li,CHENG Fang-qin,ZHOU Jing-fang.Behaviors and mechanism of iron extraction from chloride solutions using undiluted Cyphos IL 101[J].Industrial&Engineering Chemistry Research,2015,54(30):7534-7542.DOI:10.1021/acs.iecr.5b01546.
    [30]HILL P S,SCHAUBLE E A,YOUNG E D.Effects of changing solution chemistry on Fe3+/Fe2+isotope fractionation in aqueous Fe-Cl solutions[J].Geochimica Et Cosmochimica Acta,2010,74(23):6669-6689.DOI:10.1016/j.gca.2010.08.038.
    [31]HILL P S,SCHAUBLE E A,SHAHAR A,TONUI E,YOUNG E D.Experimental studies of equilibrium iron isotope fractionation in ferric aquo-chloro complexes[J].Geochimica Et Cosmochimica Acta,2009,73(8):2366-2381.DOI:10.1016/j.gca.2009.01.016.
    [32]LANGE N A,DEAN J A,Lange's Handbook of Chemistry(16th Edition)[M].New York:McGraw-Hill,2005:687-688.
    [33]XU Guang-xian,YUAN Cheng-ye.Solvent extraction of rare earth elements[M].Beijing:Science Press,2010:27-28.(in Chinese)
    [34]ZHU Zhao-wu,ZHANG Wen-sheng,CHENG Chu-yong.Aliterature review of titanium solvent extraction in chloride media[J].Hydrometallurgy,2011,105(3,4):304-313.DOI:10.1016/j.hydromet.2010.11.006.
    [35]LI Yu-hua,LI Qing-gang,ZHANG Gui-qing,ZENG Li,CAO Zuo-ying,GUAN Wen-juan,WANG Liu-pei.Separation and recovery of scandium and titanium from spent sulfuric acid solution from the titanium dioxide production process[J].Hydrometallurgy,2018,178:1-6.DOI:10.1016/j.hydromet.2018.01.019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700