用户名: 密码: 验证码:
铅锌废渣堆场4种先修复植物根际微域磷素赋存形态特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Fraction Characteristics of Phosphorus in the Rhizosphere of Four Pioneer Restoration Plants in Lead-Zinc Waste Slag Yards
  • 作者:郑志林 ; 罗有发 ; 周佳佳 ; 邱静 ; 吴兴玉 ; 高秉婷 ; 吴永贵
  • 英文作者:ZHENG Zhilin;LUO Youfa;ZHOU Jiajia;QIU Jing;WU Xingyu;GAO Bingting;WU Yonggui;College of Resources and Environmental Engineering, Guizhou University;Institute of Applied Ecology, Guizhou University;Karst Eco-Environmental Engineering Research Center of Guizhou Province;
  • 关键词:铅锌废渣 ; 植物修复 ; 根际微域 ; 磷素 ; 赋存形态
  • 英文关键词:lead-zinc smelting residue;;phytoremediation;;microdomains in the rhizosphere;;phosphorus;;occurrence forms
  • 中文刊名:水土保持研究
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:贵州大学资源与环境工程学院;贵州大学应用生态研究所;贵州省喀斯特环境生态工程研究中心;
  • 出版日期:2019-04-23
  • 出版单位:水土保持研究
  • 年:2019
  • 期:03
  • 基金:贵州省国内生态学一流学科建设项目(GNYL(2017)007号);; 国家自然科学基金(41663009);; 国家自然科学基金—贵州省联合资助项目(U1612442-3);; 贵州省教育厅自然科学研究项目(黔教合KY字(2016)011);贵州省教育厅研究生教育创新计划项目(黔教研合GZZ字(2016)07)
  • 语种:中文;
  • 页:275-284
  • 页数:10
  • CN:61-1272/P
  • ISSN:1005-3409
  • 分类号:Q948
摘要
为明确先植物根际微域中磷素赋存形态特征对铅锌废渣堆场生态修复的响应,选取黔西北土法炼锌废渣堆场植物生态修复5年后区域内长势良好的大叶醉鱼草(Buddleja davidii)、土荆芥(Chenopodinmambrosioides L.)、三叶草(Trifolium repens)及黑麦草(Lolium perenne)4种先植物根际微域废渣为研究对象,分析了不同植物根际微域及无植物(对照)废渣中无机磷(IP)、总无机磷(TIP)、有效磷(AP)、有机磷(OP)、总磷(TP)含量及pH和有机质变化情况。结果表明:与对照废渣相比,4种先植物的定植可显著降低废渣基质pH(p<0.05),但根际与非根际废渣均仍呈弱碱性(pH7.43~7.86);同时,不同植物均可促进铅锌废渣中有机质的积累,其中,大叶醉鱼草、土荆芥及三叶草均可显著(p<0.05)提高植物根际废渣中的有机质。不同植物根际微域中磷素的含量均高于对照并存在差异,其中大叶醉鱼草、土荆芥、三叶草根际废渣中总磷、有效磷与各无机磷形态的含量高于非根际,而黑麦草则与其他3种植物呈相反的变化规律。4种植物对废渣中无机磷的吸收和利用较为充分,且对有机磷具有一定的富集,具体表现为4种先植物根际废渣中TIP/TP比值(48.17%~60.70%)明显低于对照(89.97%),而OP/TP比值(39.80%~51.83%)高于对照(10.03%)。铅锌废渣堆场植物修复5年后不同先植物的生长均促进废渣中磷素和有机物的生物地球化学循环,可为渣场生态系统中群落自然演替或后续木本植物的建植提供有利的基质条件。
        In order to clarify the response of phosphorus fraction characteristics in the rhizosphere microdomain of the pioneer plant grown in the lead-zinc waste slag yard of ecological restoration, the the zinc smelting waste slag yard of ecological restoration in the northwestern Guizhou Province was selected. Four species of Pioneer plants, Buddleja davidii, Chenopodam ambrosioides L., Trifolium repens, and Lolium perenne, which grew well in the area, were selected. The contents of inorganic phosphorus(IP), total inorganic phosphorus(TIP), available phosphorus(AP), organic phosphorus(OP) and total phosphorus(TP) in the rhizosphere micro-domains and control residues were analyzed. The results showed that compared with the control residue, the four kinds of pioneer plants could significantly reduce the pH of the waste residue matrix(p<0.05), and both the root and non-root residue were still weakly alkaline with pH value between 7.43 and 7.86; the four kinds of pioneer plants could significantly increase the accumulation of organic matter in the lead-zinc waste residue matrix; the content of organic matter in the plant root waste residue was significantly higher than the control residue(except Lolium perenne); the absorption and utilization of inorganic phosphorus in waste slag were obvious in the four species of pioneer plants; the specific characteristic was that the ratios of TIP/TP(48.17%~60.70%) and OP/TP(39.80%~51.83%) in the four pioneer plant root systems. The ratios of TIP/TP in the pioneer plant root systems were less that TIP/TP(89.97%) of the control, and to OP/TP in the pioneer plant root systems was higher that(10.03%) of the control residue. The contents of phosphorus in rhizospheric microdomains of four species of pioneer plants were higher than that of the control residues. The contents of phosphorus in the microdomains of plant rhizospheres differed due to the plant species, which represented three kinds of pioneer plants(Buddleja davidii, Chenopodinm ambrosioides L., Trifolium repens), the root rhizosphere effect was significant in the root slag, and the contents of total phosphorus, available phosphorus and inorganic phosphorus in the root waste slag were higher than those in the non-root, while those in the Lolium perenne were opposite to those in the other three plants. Five years after the phytoremediation of the lead-zinc waste slag yard, the growth of different pioneer plants promoted the biogeochemical cycling of phosphorus and organic matter in the waste slag, which could be a natural succession of the community in the slag field ecosystem or a subsequent increase in the establishment of large-scale woody plants provided favorable substrate conditions.
引文
[1]Hedo J,Lucas-Borja M E,Wic C,et al.Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine(Pinus halepensis M.)forest stands[J].Solid Earth,2015,6(1):243-252.
    [2]吴攀,刘丛强,杨元根,等.土法炼锌废渣堆中的重金属及其释放规律[J].中国环境科学,2002,22(2):109-113.
    [3]Yang S X,Li J T,Yang B,et al.Effectiveness of amendments on re-acidification and heavy metal immobilization in an extremely acidic mine soil[J].Journal of Environmental Monitoring,2011,13(7):1876-1883.
    [4]Bradshaw A.Restoration of mined lands-using natural processes[J].Ecological Engineering,1997,8(4):255-269.
    [5]Wong M H.Ecological restoration of mine degraded soils,with emphasis on metal contaminated soils[J].Chemosphere,2003,50(6):775-780.
    [6]Mendez M O,Maier R M.Phytoremediation of mine tailings in temperate and arid environments[J].Reviews in Environmental Science and Bio/Technology,2008,7(1):47-59.
    [7]Goloran J B,Chen C,Phillips I R,et al.Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand[J].Scientific Reports,2015,5:14811.
    [8]Jones B E H,Haynes R J,Phillips I R.Cation and anion leaching and growth of Acacia saligna in bauxite residue sand amended with residue mud,poultry manure and phosphogypsum[J].Environmental Science and Pollution Research,2012,19(3):835-846.
    [9]Luo Y F,Wu Y G,Wang H,et al.Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5years[J].Environmental Science and Pollution Research,2018,25(15):14773-14788.
    [10]安宗胜,詹婧,孙庆业.自然植物群落形成过程中铜尾矿废弃地氮素组分的变化[J].生态学报,2010,30(21):5958-5966.
    [11]任冠举,孙庆业,安树青,等.不同植物群落下酸化尾矿养分状况及土壤酶活性[J].生态学杂志,2006,25(4):379-382.
    [12]Yang S X,Cao J B,Li F M,et al.Field evaluation of the effectiveness of three industrial by-products as organic amendments for phytostabilization of a Pb/Zn mine tailings[J].Environmental Science:Processes&Impacts,2016,18(1):95-103.
    [13]Lei D M,Duan C Q.Restoration potential of pioneer plants growing on lead-zinc mine tailings in Lanping,southwest China[J].Journal of Environmental Sciences,2008,20(10):1202-1209.
    [14]Pardo T,Bernal M P,Clemente R.Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments[J].Chemosphere,2017,178:556-564.
    [15]Courtney R,Mullen G,Harrington T.An evaluation of revegetation success on bauxite residue[J].Restoration Ecology,2009,17(3):350-358.
    [16]Santini T C,Fey M V.Spontaneous vegetation encroachment upon bauxite residue(red mud)as an indicator and facilitator of in situ remediation processes[J].Environmental Science&Technology,2013,47(21):12089-12096.
    [17]Xue S G,Zhu F,Kong X F,et al.A review of the characterization and revegetation of bauxite residues(Red mud)[J].Environmental Science and Pollution Research,2016,23(2):1120-1132.
    [18]Sperow M.Carbon sequestration potential in reclaimed mine sites in seven east-central states[J].Journal of Environmental Quality,2006,35(4):1428-1438.
    [19]Celi L,Cerli C,Turner B L,et al.Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand quarries in Northwestern Russia[J].Plant and Soil,2013,367(1/2):121-134.
    [20]Anderson C R,Condron L M,Clough T J,et al.Biochar induced soil microbial community change:implications for biogeochemical cycling of carbon,nitrogen and phosphorus[J].Pedobiologia,2011,54(5/6):309-320.
    [21]Goloran J B,Chen C R,Phillips I R,et al.Plant phosphorus availability index in rehabilitated bauxiteprocessing residue sand[J].Plant and Soil,2014,374(1/2):565-578.
    [22]Goloran J B,Phillips I R,Chen C R.Forms of nitrogen alter plant phosphorus uptake and pathways in rehabilitated highly alkaline bauxite processing residue sand[J].Land Degradation&Development,2017,28(2):628-637.
    [23]Chrysochoou M,Dermatas D,Grubb D G.Phosphate application to firing range soils for Pb immobilization:the unclear role of phosphate[J].Journal of Hazardous Materials,2007,144(1/2):1-14.
    [24]Ruby M V,Davis A,Nicholson A.In situ formation of lead phosphates in soils as a method to immobilize lead[J].Environmental Science&Technology,1994,28(4):646-654.
    [25]陈世宝,李娜,王萌,等.利用磷进行铅污染土壤原位修复中需考虑的几个问题[J].中国生态农业学报,2010,18(1):203-209.
    [26]柯莉萍,张艳,李冬立.威宁县严重干旱气候条件分析[J].现代农业科技,2011(13):286-288.
    [27]宋振涛,管少斌,牛禹,等.黔西北铅锌成矿带成矿地质条件与找矿标志[J].矿产与地质,2017,31(3):460-471.
    [28]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [29]朱广伟,秦伯强,高光,等.灼烧对沉积物烧失量及铁,磷测定的影响[J].分析试验室,2004,23(9):72-76.
    [30]刘晶晶,李敏,曲博,等.湿地挺水植物根系土壤中的磷形态变化与分析[J].中国环境科学,2013,33(11):2040-2046.
    [31]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [32]Dinkelaker B,R9mheld V,Marschner H.Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin(Lupinus albus L.)[J].Plant Cell&Environment,1989,12(3):285-292.
    [33]Cerli C,Celi L,Johansson M,et al.Soil organic matter changes in a spruce chronosequence on swedish former agricultural soil[J].Soil Science,2006,171(11):837-849.
    [34]林启美,赵小蓉,孙焱鑫,等.4种不同生态系统的土壤解磷细菌数量及种群分布[J].土壤与环境,2000,9(1):34-37.
    [35]章家恩,刘文高.微生物资源的开发利用与农业可持续发展[J].土壤与环境,2001,10(2):154-157.
    [36]Ding Y Z,Song Z G,Feng R W,et al.Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils[J].International Journal of Environmental Science and Technology,2014,11(1):33-42.
    [37]Mendez M O,Glenn E P,Maier R M.Phytostabilization potential of quailbush for mine tailings[J].Journal of Environmental Quality,2007,36(1):245-253.
    [38]童倩倩,何腾兵,高雪,等.贵州省耕地土壤的养分状况[J].贵州农业科学,2011,39(2):82-84.
    [39]麻占威,吴永贵,付天岭,等.不同植物凋落物对土法冶炼铅锌废渣的改良效果[J].贵州农业科学,2014,42(6):188-192.
    [40]景陵.植物营养学(上)[M].北京:中国农业大学出版社,2002.
    [41]黄彬彬.不同母岩和林龄杉木人工林土壤磷素形态特征研究[D].福州:福建农林大学,2017.
    [42]张福锁.环境胁迫与植物根际营养[M].北京:中国农业出版社,1997.
    [43]李金辉,卢鑫,周志宇,等.不同种植年限紫穗槐根际非根际土壤磷组分含量特征[J].草业学报,2014,23(6):61-68.
    [44]Venterink H O,Davidsson T E,Kiehl K,et al.Impact of drying and re-wetting on N,P and K dynamics in a wetland soil[J].Plant and Soil,2002,243(1):119-130.
    [45]贵州省土镶普查办公室.贵州省土壤[M].贵阳:贵州科技出版社,1994.
    [46]Hinsinger P.Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J].Plant and Soil,2001,237(2):173-195.
    [47]Bekele T,Cino B J,Ehlert P A I,et al.An evaluation of plant-borne factors promoting the solubilization of alkaline rock phosphates[J].Plant&Soil,1983,75(3):361-378.
    [48]Hinsinger P,Elsass F,Jaillard B,et al.Root-induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape[J].European Journal of Soil Science,1993,44(3):535-545.
    [49]Hinsinger P,Gilkes R J.Root-induced dissolution of phosphate rock in the rhizosphere of lupins grown in alkaline soil[J].Soil Research,1995,33(3):477-489.
    [50]姚拓.高寒地区燕麦根际联合固氮菌研究Ⅱ固氮菌的溶磷性和分植物生长素特性测定[J].草业学报,2004,13(3):85-90.
    [51]申建波,张福锁.根分物的生态效应[J].中国农业科技导报,1999,1(4):21-27.
    [52]沈宏,杨存义,范小威,等.大豆根系分物和根细胞壁对难溶性磷的活化[J].生态环境,2004,13(4):633-635.
    [53]Ae N,Otani T.The role of cell wall components from groundnut roots in solubilizing sparingly soluble phosphorus in low fertility soils[J].Plant and Soil,1997,196(2):265-270.
    [54]Shen H,Wang X C,Shi W M.Isolation and identification of specific root exudates in elephant grass(Pennis lium L.)in response to phosphorus deficiency[J].Journal of Plant Nutrition,2001,24(7):1117-1130.
    [55]刘志红,宋之光,雷怀彦,等.土荆芥生长土壤的环境地球化学特征[J].时珍国医国药,2010,21(1):252-254.
    [56]刘艺杉,刘自学,李晓光,等.北京地区3种冷季型禾本科草坪草生物量及养分吸收动态的研究[J].草业科学,2008,25(4):88-94.
    [57]Zoysa A K N,Loganathan P,Hedley M J.A technique for studying rhizosphere processes in tree crops:soil phosphorus depletion around camellia(Camellia japonica L.)roots[J].Plant and Soil,1997,190(2):253-265.
    [58]刘文静,张平究,董国政,等.不同退耕年限下菜子湖湿地土壤磷素组分特征变化[J].生态学报,2014,34(10):2654-2662.
    [59]Hamad M E,Rimmer D L,Syers J K.Effect of iron oxide on phosphate sorption by calcite and calcareous soils[J].Journal of Soil Science,1992,43(2):273-281.
    [60]Takagi S,Kamei S,Yu M H.Efficiency of iron extraction from soil by mugineic acid family phytosiderophores[J].Journal of Plant Nutrition,1988,11(6/11):643-651.
    [61]章爱群,贺立源,赵会娥,等.有机酸对土壤无机态磷转化和速效磷的影响[J].生态学报,2009,29(8):4061-4069.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700