用户名: 密码: 验证码:
淀山湖大型底栖动物群落结构及其与环境因子的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Macrozoobenthos Community Structure and Its Relationship with Environmental Factors in Dianshan Lake
  • 作者:朱利明 ; 肖文胜 ; 周东 ; 张玮 ; 王丽 ; 张瑞雷
  • 英文作者:ZHU Li-ming;XIAO Wen-sheng;ZHOU Dong;ZHANG Wei;WANG Li-qing;ZHANG Rui-lei;Ministry of Agriculture Centre for Research on Environmental Ecology and Fish Nutrient(CREEFN),Shanghai Ocean University;Ministry of Education Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources,Shanghai Ocean University;National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University;
  • 关键词:淀山湖 ; 底栖动物 ; 群落结构 ; 环境因子
  • 英文关键词:Dianshan Lake;;macrozoobenthos;;spatial distribution pattern;;environmental factors
  • 中文刊名:水生态学杂志
  • 英文刊名:Journal of Hydroecology
  • 机构:上海海洋大学农业部鱼类营养与环境生态研究中心;上海海洋大学水产种质资源发掘与利用教育部重点实验室;上海海洋大学水产科学国家级实验教学示范中心;
  • 出版日期:2019-03-15
  • 出版单位:水生态学杂志
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(31201739)
  • 语种:中文;
  • 页:57-67
  • 页数:11
  • CN:42-1785/X
  • ISSN:1674-3075
  • 分类号:Q958.8
摘要
为了解淀山湖大型底栖动物群落结构特征及其与环境因子的关系,于2014-2015年对淀山湖11个采样点的大型底栖动物按季度进行8次调查,同时对12项水环境指标进行监测。结果表明,大型底栖动物共计47种,其中寡毛类4种(9%),多毛类4种(9%),甲壳类6种(13%),摇蚊幼虫18种(38%),软体动物12种(26%),其他3种。河蚬Corbicula fluminea为第一优势种(IRI=41.26),其次为疣吻沙蚕Tylorrhynchus heterochaetus(5.23)、红裸须摇蚊Propsilocerus akamusi(3.17)、霍甫水丝蚓Limnodrilus hoffmeisteri(2.37)、日本旋卷蜾蠃蜚Corophium volutator(2.1)、寡鳃齿吻沙蚕Nephtys oligobranchia(1.92)、三角石缨虫Laonome triangularis(1.92)、太湖裸须摇蚊Propsilocerus taihuensis(1.43)。底栖动物密度存在显著的空间差异和季节变化,空间上,其最高值主要集中在湖心区,平均密度为385个/m~2,湖口区次之,为343.2个/m~2,湖湾区平均密度最小,为252.3个/m~2;大型底栖动物的密度在冬季最大,秋季最小,冬季出现大量的红裸须摇蚊。全年与四季的底栖动物密度和水质数据冗余分析(RDA)以及经蒙特卡罗置换检验(Monte Carlo)表明,淀山湖水体的电导率(SPC)、水温(WT)、总氮(TN)、高锰酸钾指数(COD_(Mn))和溶解氧(DO)是影响底栖动物群落分布关键的环境因子。
        Dianshan Lake is the largest lake in the suburban area of Shanghai City and is affected primarily by the upstream inflow of water from Taihu Lake. Water quality in Dianshan Lake has deteriorated year by year and eutrophication has become problematic. In this study, we explored the structure of the macrozoobenthos community and its relationship with environmental factors in Dianshan Lake during 2014-2015 and analyzed the evolution of the macrozoobenthos community over the past 30 years. The objectives were to provide scientific evidence and basic data for environment protection and comprehensive regulation of Dianshan Lake. In January(winter), April(spring), July(summer) and October(autumn) of 2014 and 2015, the macrozoobenthos investigation was carried out at 11 sampling sites, representing the lake entrance(S1, S2, S7-9), center(S4, S10,S11) and bay(S3,S5,S6). Water samples were collected at the same sites for determination of 12 physicochemical parameters: WT, SD, pH, DO, Chl-a, TN, TP, NH~+_4-N, COD_(Mn), PO_4~(+3)-P, SPC and SAL. A total of 47 species were identified, including 4 Oligochaeta species(9%), 4 Polychaeta species(9%), 6 Crustacean species(13%), 18 Chironomid larvae species(38%) and 12 Mollusca species(26%). The dominant species were Corbicula fluminea(IRI= 41.26), Tylorrhynchus heterochaetus(5.23), Propsilocerus akamusi(3.17), Limnodrilus hoffmeisteri(2.37), Corophium volutator(2.1), Nephtys oligobranchia(1.92), Laonome triangularis(1.92) and Propsilocerus taihuensis(1.43). The macrozoobenthos density in Dianshan Lake displayed significant spatial and seasonal variation. The highest density occurred in the lake center(385 ind/m~2), followed by the entrance area(343.2 ind/m~2) and bay area(252.3 ind/m~2). Seasonally, the total density of macrozoobenthos was highest in winter, lowest in autumn and Propsilocerus akamusi density was high in the winter. Redundancy analysis and Monte Carlo testing showed that SPC, WT, TN, COD_(Mn) and DO significantly affected the distribution and structure of the macrozoobenthos community. The present macrozoobenthos density and biomass are higher than in previous surveys and the species composition and dominant species have changed, consistent with the observed variation in water quality. However, because of long-term ecological damage, the dominant groups, except for Corbicula fluminea, continue to be pollution tolerant Oligochaeta and Chironomid larvae.
引文
蔡永久,姜加虎,张路,等,2010. 长江中下游湖泊大型底栖动物群落结构及多样性[J]. 湖泊科学, 22(6): 811-819.
    陈立婧,彭自然,孙家平,等,2008. 安徽南漪湖大型底栖动物群落结构[J]. 动物学杂志, 43(1): 63-68.
    陈小华,高伟,刘文亮,等,2013. 平原河网地区大型底栖动物群落结构及其与环境因子的关系[J]. 生态环境学报,22(8): 1310-1316.
    程曦,李小平,2008. 淀山湖氮磷营养物20年变化及其藻类增长响应[J]. 湖泊科学,20(4): 409-419.
    董贯仓,刘超,李秀启,等,2015. 东平湖底栖动物群落特征及水环境分析[J]. 生物学杂志,32(1): 39-43.
    董贯仓,李秀启,师吉华,等,2013. 南四湖底栖动物群落结构特征及其与环境因子的关系[J]. 湖泊科学,25(1): 119-130.
    冯德祥,刘一,禹娜,2011. 淀山湖后生浮游动物群落结构特征分析[J]. 华东师范大学学报(自然科学版), (6): 122-131.
    高峰,尹洪斌,胡维平,等,2010. 巢湖流域春季大型底栖动物群落生态特征及与环境因子关系[J]. 应用生态学报,21(8): 2132-2139.
    龚志军,谢平,唐汇涓,等,2001. 水体富营养化对大型底栖动物群落结构及多样性的影响[J]. 水生生物学报,25(3): 210-216.
    蒋万祥,贾兴焕,周淑婵,等,2009. 香溪河大型底栖动物群落结构季节动态[J]. 应用生态学报,20(4): 923-928.
    李宏祥, 田华,梁国康,2012. 淀山湖富营养化现状及生态修复措施分析[J]. 水资源保护, 28(3):83-87.
    刘玉,2003. 珠江、流溪河大型底栖动物分布和氮磷因子的相关分析[J]. 中山大学学报(自然科学版),42(1): 95-99.
    刘月英,张文珍,王跃先,1979. 我国椎实螺科新纪录[J]. 动物分类学报, (4): 311.
    卢嘉,李小平,陈小华,等,2011. 淀山湖水环境污染探析[J]. 环境科学与管理,36(2): 116-120.
    阮仁良,王云,1993. 淀山湖水环境质量评价及污染防治研究[J]. 湖泊科学, 5(2): 153-158.
    施玮,吴和岩,赵耐青,等,2005. 淀山湖水质富营养化和微囊藻毒素污染水平[J]. 环境科学,26(5):55-61.
    施文,刘利华,达良俊,2011. 上海淀山湖水生高等植物现状及其近30年变化[J]. 湖泊科学, 23(3): 417-423.
    王皓冉,陈永灿,刘昭伟,等,2015. 牡丹江中游底栖动物分布及其与栖境因子的关系[J]. 中国环境科学,35(4): 1197-1204.
    王俊才,王新华,2011. 中国北方摇蚊幼虫[M]. 北京: 中国言实出版社.
    王丽卿,许莉,卢子园,等,2011. 淀山湖浮游植物数量消长及其与环境因子的关系[J]. 环境科学,32 (10): 2868-2874.
    王小庆,2005. 淀山湖沉积物中重金属元素分布特征及其季节变化[J]. 环境科学与技术,28(6): 106-108.
    熊金林,梅兴国,胡传林,等,2003. 不同污染程度湖泊底栖动物群落结构及多样性比较[J]. 湖泊科学,15(2): 160-168.
    徐霖林,2011. 淀山湖大型底栖动物群落结构特征及其与水体理化因子关系的研究[D]. 上海:华东师范大学.
    徐霖林,马长安,田伟,等,2011. 淀山湖沉水植物恢复重建对底栖动物的影响[J]. 复旦学报(自然科学版),50(3): 260-267.
    徐小雨,周立志,朱文中,等,2011. 安徽菜子湖大型底栖动物的群落结构特征[J]. 生态学报,31(4): 943-953.
    薛俊增, 蔡桢, 方伟, 等,2010. 淀山湖养殖围网拆除后昆山水域浮游生物生态现状初步研究[J]. 上海海洋大学学报,19(4): 514-520.
    闫云君,梁彦龄, 王洪铸, 2002. 保安湖扁担塘螺类生产力的研究Ⅲ.长角涵螺的周年生产量[J]. 水生生物学报, (4): 322-326.
    杨漪帆, 朱永青, 林卫青, 2009. 淀山湖蓝藻水华及其控制因子的模型研究[J]. 环境污染与防治, 31(6): 58-63.
    由文辉, 1999. 淀山湖着生藻类群落结构与数量特征[J]. 环境科学, 20(5): 62-65.
    由文辉,尤力群,1998. 淀山湖软体动物群落的研究[J]. 华东师范大学学报(自然科学版),(1): 101-109.
    张波,高兴梅,宋秀贤,等,1998. 芝罘湾底质环境因子对底栖动物群落结构的影响[J]. 海洋与湖沼,29(1): 53-60.
    张鼎国,杨再福,2006. 淀山湖生态环境的演变与对策[J]. 水利渔业, 26(1): 61-63.
    张世海,张瑞雷,王丽卿,等,2010. 上海市淀山湖底栖动物群落结构及水质评价[J]. 四川动物,29(3): 452-458.
    张远,徐成斌,马溪平,等,2007. 辽河流域河流底栖动物完整性评价指标与标准[J]. 环境科学学报, 27(6): 919-927.
    赵爱萍,刘福影,吴波,等,2005. 上海淀山湖的浮游植物[J]. 上海师范大学学报(自然科学版), 34(4): 70-76.
    郑晓红,汪琴,2009. 淀山湖水质状况及富营养化评价[J]. 环境监测管理与技术, (2): 68-70.
    朱梦杰,汤琳,吴阿娜,2010. 近10年淀山湖浮游植物群落结构特征及变化趋势探讨[J]. 上海环境科学,29(4): 153-156.
    Baudo R, Ochhipinti A, Nocentini A M, 2001. Benthos of Lake Orta in the year 1996[J]. Journal of Limnology, 60(2) :241-248.
    Benke A C, 1993. Concepts and patterns of invertebrate production in running waters[J]. Verh Internat Verei Limnol, 25: 15-38.
    Coen L D, Heck K L, Abele L G, 1981. Experiments on competition and predation among shrimps of seagrass meadows[J]. Ecology, 62(6): 1484-1493.
    Cyr H, Downing J A, 1988. The abundance of phytophilous invertebrates on different species of submerged macrophytes[J]. Freshwater biology, 20(3): 365-374.
    Flores L N, Barone R, 1998. Phytoplankton dynamics in two reservoirs with different trophic state(Lake Rosamarina andLake Arancio, Sicily, Italy)[J]. Hydrobiologia, 369/370: 163-178.
    Hauer F R, Benke A C, 1991. Rapid growth of snag-dwelling chironomids in a blackwater river: the influence of temperature and discharge[J]. Journal of the North American Benthological Society, 10(2): 154-164.
    Hauer F R, Benke A C, 1991. Rapid growth of snag-dwelling chironomids in a blackwater river: the influence of temperature and discharge[J]. Journal of North American Benthological Society, 10:154-164.
    Hooper H L, Sibly R M, Hutchinson T H, et al, 2003. The influence of larval density, food availability and habitat longevity on the life history and population growth rate of the midge Chironomus riparius[J]. Oikos, 102(3): 515-524.
    Ingham R E, 1985. Interactions of bacteria, fungi and their nematode grazers: effect on nutrient and plant growth [J]. Ecological Monograph, 55: 119-140.
    James R T, David D H, Donald F C, et al, 2005. Effects of removal of a small dam on downstream macro-invertebrate and algal assemblages in a Pennsylvania stream[J].Journal of the North American Benthological Society, 24(1): 192-207.
    Keast A, 1985. Planktivory in a littoral-dwelling lake fish association: prey selection and seasonality[J]. Canadian Journal of Zoology, 62: 1289-1303.
    Kennedy AD, 1994. Carbon partitioning within meiobenthic nematode communities in the Exe Estuary, UK [J]. Marine Ecology Progress Series, 105: 71-78.
    Kitagawa N, 1978. A classification of Japanese lakes based on hypolimnetic oxygen and benthonic fauna[J]. Japanese Journal of Limnology, 39: 1-8.
    Lindegaard C, 1990. The role of zoobenthos in energy flow in deep, oligotrophic Lake Thingvallavatn, Iceland [J]. Hydrobiologia, 243/244: 185-195.
    Lindegaard C, 1995. Classification of water-bodies and pollution[A]. In: Armitage P, Cranston P S, Pinder L C V(Eds.), The Chironomidae: the biology and ecology of nonbiting midges[C]. London: Chapman & Hall. 384-404.
    Lopes M R M, Bicudo C E M, Ferragut M C, 2005. Short term spatial and temporal variation of phytoplankton in a shallow tropical oligotrophic reservoir,southeast Brazil[J]. Hydrobiologia, 542(1): 235-247.
    Mcqueen D,Post J,Mills E,1986. Trophic relations in fresh water pelagic ecosystem[J]. Canadian journal of Fisheries and Aquatic Science,43: 1571-1581.
    Muylaert K, Sabbe K, Vyverman W, 2000. Spatial and temporal dynamics of phytoplankton communities in a fresh watertidal estuary(Schelde,Belgium)[J]. Estuarine, Coastaland Shelf Science, 50(5): 673-687.
    Petridis D, Sinis A, 1993. Benthic maerofauna of TavroposReservoir (central Greece)[J]. Hydrobiologia, 262(1): 1-12.
    Pinkas L, Oliphant M S, Iverson I L K, 1971. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. California Department of Fish and Game: Fish Bulletin, 152: 1-105.
    Shostell J M, Williams B S, 2007. Habitat complexity as a determinate of benthic macroinvertebrate community structure in cypress tree reservoirs[J]. Hydrobiologia, 575(1): 389-399.
    Tews J, Brose U, Grimm V, et al, 2004. Animal species diversity driven by habitat heterogeneity diversity: The importance of keystone structures[J]. Journal of Biogeography, 31(1): 79-92.
    Xie Z, Tang T, Ma K, et al, 2005. Influence of environmental variables on macroinvertebrates in a macrophyte-dominated Chinese lake, with emphasis on the relationships between macrophyte heterogeneity and macroinvertebrate patterns[J]. Journal of Freshwater Ecology, 20(3): 503-512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700