补播对退化荒漠草原土壤有机碳及其分布的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Reseeding on Soil Organic Carbon Content and Its Distribution in Degraded Desert Steppes
  • 作者:郭艳菊 ; 马晓静 ; 于双 ; 许冬梅
  • 英文作者:GUO Yan-ju;MA Xiao-jing;YU Shuang;XU Dong-mei;College of Agriculture,Ningxia university;
  • 关键词:荒漠草原 ; 补播 ; 土壤有机碳 ; 剖面分布 ; 粒径分布
  • 英文关键词:Desert steppe;;Reseeding;;Soil organic carbon;;Profile distribution;;Particle size distribution
  • 中文刊名:草地学报
  • 英文刊名:Acta Agrestia Sinica
  • 机构:宁夏大学农学院;
  • 出版日期:2019-03-15
  • 出版单位:草地学报
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划重点专项(2016YFC0500505);; 宁夏高等学校一流学科建设(草学学科)项目(NXYLXK2017A01)资助
  • 语种:中文;
  • 页:40-44
  • 页数:5
  • CN:11-3362/S
  • ISSN:1007-0435
  • 分类号:S812.2
摘要
本研究以未补播(CK)、隔带深翻后补播蒙古冰草(Agropyron mongolicum)(M)、沙生冰草(A.desertorum)(S)及蒙古冰草+沙生冰草(G)的草地为对象,研究不同处理荒漠草原0~40cm土壤总有机碳在土壤剖面和不同粒级团聚体中的分布。结果表明:不同补播模式草地全土有机碳及团聚体有机碳含量较对照均有所提高,10~20cm和20~30cm土层,沙生冰草补播草地显著高于未补播草地(P<0.05);30~40cm土层,各补播草地均显著高于未补播草地(P<0.05)。各处理草地土壤有机碳含量随土层的加深逐渐增加,30~40cm土层均显著高于0~10cm土层(P<0.05)。不同处理草地各土层团聚体有机碳含量以<0.053mm粒级最高。随土层加深,大团聚体对土壤有机碳的贡献增大,30~40cm土层以0.053~0.25mm和>2mm粒径较高。总体看,补播有利于退化荒漠草原土壤有机碳的固存,在本研究所做处理中补播沙生冰草对土壤有机碳的增加效果较为明显。
        In order to explore the effects of reseeding on soil organic carbon and its distribution in desert steppe,the experimental plots were deep ploughed and reseeded using Agropyron mongolicum+A.desertorum(G),A.mongolicum(M)and A.desertorumS(S).The non-reseeded grasslands were used as control group(CK).The soil organic carbon and its distribution in soil profiles and different size of aggregates at0~40 cm depth of each treatment were studied.The results showed that the contents of the total and aggregate organic carbon increased in grasslands of different reseeding treatments compared with the control grassland,especially at 30~40 cm depth.The soil organic carbon at 10~20 cm and 20~30 cm depth in grassland reseeded with A.desertorum were significantly higher than that of control grassland(P<0.05).For profile distribution,the soil organic carbon contents in all treated grasslands increased gradually with depth,and they were significantly higher at 30~40 cm depth than those at 0~10 cm depth(P<0.05).The contents of<0.053 mm aggregates organic carbon were the highest at each depth in different treated grasslands.The contribution of macroaggregates to soil organic carbon increased with depth.At 30~40 cm soil layer,0.053~0.25 mm and>2 mm aggregates contributed more to total organic carbon.Overall,reseeding was conducive to soil organic carbon sequestration for degraded desert steppe.In this study,the effect of increasing soil organic carbon was obvious by reseeded with A.desertorum.
引文
[1]穆少杰,周可新,陈奕兆,等.草地生态系统碳循环及其影响因素研究进展[J].草地学报,2014,22(3):439-447
    [2]Li Z,Liu C,Dong Y,et al.Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China[J].Soil&Tillage Research,2017,166(1):1-9
    [3]Lal R.Soil carbon sequestration to mitigate climate change[J].Geoderma,2004,123(1-2):1-22
    [4]Zhang C,Liu G,Xue S,et al.Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau,China[J].European Journal of Soil Biology,2013,54(1):16-24
    [5]Post W M,Kwon K C.Soil carbon sequestration and land-use change:processes and potential[J].Global Change Biology,2000,6(3):317-327
    [6]Zhang J H,Wang Y,Li F C.Soil organic carbon and nitrogen losses due to soil erosion and cropping in a sloping terrace landscape[J].Soil Research,2015,53(1):87-96
    [7]张蒙,李晓兵.放牧对土壤有机碳的影响及相关过程研究进展[J].草地学报,2018,26(2):267-276
    [8]李玮,郑子成,李廷轩,等.不同植茶年限土壤团聚体及其有机碳分布特征[J].生态学报,2014,34(21):6326-6336
    [9]程曼,朱秋莲,刘雷,等.宁南山区植被恢复对土壤团聚体水稳定及有机碳粒径分布的影响[J].生态学报,2013,33(9):2835-2844
    [10]Dinel,Mehuys,G R,et al.Influence of humic and fibric materials on the aggregation and aggregate stability of a lacustrine silt clay[J].Soil Science,1991,151(2):146-158
    [11]陈建国,田大伦,闫文德,等.土壤团聚体固碳研究进展[J].中南林业科技大学学报,2011,31(5):74-80
    [12]Wang Y,Fu B,LüY,et al.Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau,China[J].Catena,2011,85(1):58-66
    [13]Jarecki M K,Lal R.Crop Management for Soil Carbon Sequestration[J].Critical Reviews in Plant Sciences,2003,22(6):471-502
    [14]张永超,牛得草,韩潼,等.补播对高寒草甸生产力和植物多样性的影响[J].草业学报,2012,21(2):305-309
    [15]张平良,李小刚,李银科,等.高寒农牧交错带植被恢复对土壤有机碳、全氮含量的影响[J].甘肃农业大学学报,2007,42(2):98-102
    [16]刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展[J].生态学报,2007,27(6):2642-2650
    [17]王静娅,张凤华.干旱区典型盐生植物群落土壤团聚体组成及有机碳分布[J].生态学报,2016,36(3):600-607
    [18]华娟,赵世伟,张扬,等.云雾山草原区不同植被恢复阶段土壤团聚体活性有机碳分布特征[J].生态学报,2009,29(9):4613-4619
    [19]高会议,郭胜利,刘文兆,等.不同施肥处理对黑垆土各粒级团聚体中有机碳含量分布的影响[J].土壤学报,2010,47(5):931-938
    [20]谢锦升,杨玉盛,陈光水等.植被恢复对退化红壤团聚体稳定性及碳分布的影响[J].生态学报,2008,28(2):702-708
    [21]Devine S,Markewitz D,Hendrix P,et al.Soil aggregates and associated organic matter under conventional tillage,no-tillage,and forest succession after three decades[J].Plos One,2014,9(1):e84988
    [22]许冬梅,许新忠,王国会,陶利波.宁夏荒漠草原自然恢复演替过程中土壤有机碳及其分布变化[J].草业学报,2017,26(08):35-42