用户名: 密码: 验证码:
氧化还原循环过程中沉积物磷的形态及迁移转化规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Speciation and Transformation of Phosphorus in Sediments During the Redox Cycle
  • 作者:郝文超 ; 王从锋 ; 杨正健 ; 刘德富 ; 纪道斌 ; 赵萍 ; 丹勇 ; 胡子龙
  • 英文作者:HAO Wen-chao;WANG Cong-feng;YANG Zheng-jian;LIU De-fu;JI Dao-bin;ZHAO Ping;DAN Yong;HU Zi-long;College of Hydraulic and Environmental Engineering,China Three Gorges University;Collaborative Innovation Center for Geo-hazards and Eco-Environment in Three Gorges Area,Hubei Province;Hubei Key Laboratory of Ecological Restoration of River-lakes and Algal Utilization,Hubei University of Technology;
  • 关键词:氧化还原环境 ; 磷形态 ; 迁移转化 ; 扩散通量 ; 氧化还原体系
  • 英文关键词:redox environment;;phosphorus speciation;;migration and transformation,diffusion flux;;redox system
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:三峡大学水利与环境学院;三峡地区地质灾害与生态环境湖北省协同创新中心;湖北工业大学河湖生态修复与藻类利用湖北省重点实验室;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金重大项目(91647207)
  • 语种:中文;
  • 页:130-138
  • 页数:9
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X524
摘要
为研究沉积物在氧化还原循环过程中磷循环迁移转化机制,通过控制实验模拟分析氧化还原条件下,上覆水理化性质变化特征、沉积物各形态磷变化及机制研究,并量化沉积物中磷的重新分配和沉积物磷酸盐的释放通量影响.结果表明:(1)氧化还原电位Eh和p H体系、硫体系、碳体系以及与磷相关性密切的铁体系变化规律具有周期性,并对解释沉积物-水两相界面磷的迁移转化机制有重要作用;(2)在氧化还原循环过程中,各形态磷含量随着氧化还原条件和时间变化,根据水-沉积物磷素变化量化分析可得,可还原态磷(BD-P)和铁铝结合态磷(Na OH-rP)是可逆地重新分配到弱吸附态磷(NH4Cl-P)、聚磷/有机磷(Na OH-nrP)、残渣态磷(Rest-P)和间隙水溶解性活性磷(SRP)中,且沉积物中变化量93. 7%的磷在还原反应时不会释放到水体中;(3)上覆水总磷(TP)浓度变化的92%为上覆水的SRP,表明水-沉积物在该循环过程中以水溶性磷交换为主;(4)根据Fick第一定律得,还原阶段磷扩散通量最大值为0. 58 mg·(m~2·d)-1,而氧化阶段第7 d扩散通量约为0. 16~0. 22 mg·(m~2·d)-1;氧化反应阶段,扩散通量随时间逐渐降低,还原阶段的变化趋势相反,表明还原状态会加速沉积物磷的扩散程度,而曝氧降低了沉积物磷扩散通量.
        To study the mechanism of phosphorus cycling in sediment during the redox cycle,changes in physicochemical properties of overlying water and various forms of phosphorus in sediments were investigated as a way to quantify the redistribution of phosphorus.Additionally,the effect of the release flux of phosphate from sediments under controlled redox conditions was analyzed. The results showed that the redox potential Eh and the p H system,sulfur system,carbon system,and iron-related changes exhibited periodicity and played an important role in explaining the migration and transformation mechanism in the interface phosphorus of the sedimentwater phase. During the redox cycle,the phosphorus content of each species varied with the redox conditions and time. Because of this,quantitative analysis based on changes in water-sediment phosphorus could be obtained. Reducible phosphorus( BD-P) and ironaluminum-bound phosphorus( Na OH-rP) were reversibly redistributed into weakly adsorbed phosphorus( NH4 Cl-P),polyphosphorus/organophosphorous( Na OH-nrP), residual phosphorus( Rest-P), and interstitial water-soluble active phosphorus( SRP).Additionally,93. 7% of phosphorus in the sediment was not released into the water phase during the reduction reaction. The 92% of change in the overlying water total phosphorus( TP) was the SRP of overlying water,which showed that the exchange of the sedimentwater phase were mainly soluble active phosphorus in this cycle. According to Fick's First Law,the maximum phosphorus flux was 0. 58 mg·( m~2·d)-1 during reduction and 0. 16-0. 22 mg·( m~2·d)-1 on day seven of the oxidation phase. In the oxidation stage,the diffusion flux decreased with time,while the opposite trend occurred in the reduction reaction. This indicated that the anaerobic state accelerated the diffusion of phosphorus in sediments,and that oxygen exposure decreased the phosphorus flux in sediments.
引文
[1] Katsev S,Dittrich M. Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions[J].Ecological Modelling,2013,251:246-259.
    [2] Mayer T,Rosa F,Mayer R,et al. Relationship between the sediment geochemistry and phosphorus fluxes in a great lakes coastal marsh,cootes paradise,ON,Canada[J]. Water,Air,&Soil Pollution:Focus,2006,6(5-6):495-503.
    [3]徐洋,陈敬安,王敬富,等.氧化还原条件对红枫湖沉积物磷释放影响的微尺度分析[J].湖泊科学,2016,28(1):68-74.Xu Y,Chen J A,Wang J F,et al. The micro-scale investigation on the effect of redox condition on the release of the sediment phosphorus in Lake Hongfeng[J]. Journal of Lake Sciences,2016,28(1):68-74.
    [4] Parsons C T,Rezanezhad F,O'Connell D W,et al. Sediment phosphorus speciation and mobility under dynamic redox conditions[J]. Biogeosciences,2017,14(14):3585-3602.
    [5] Huang Q H,Wang Z J,Wang C X,et al. Phosphorus release in response to pH variation in the lake sediments with different ratios of iron-bound P to calcium-bound P[J]. Chemical Speciation&Bioavailability,2005,17(2):55-61.
    [6] Kraal P,Burton E D,Rose A L,et al. Sedimentary ironphosphorus cycling under contrasting redox conditions in a eutrophic estuary[J]. Chemical Geology,2015,392:19-31.
    [7] Joshi S R,Kukkadapu R K,Burdige D J,et al. Organic matter remineralization predominates phosphorus cycling in the mid-Bay sediments in the Chesapeake Bay[J]. Environmental Science&Technology,2015,49(10):5887-5896.
    [8]袁探.外源硫酸盐对武汉南湖沉积物磷迁移特性的作用[D].武汉:华中农业大学,2011. 37-44.Yuan T. Effect of exotic sulfate on phosphorus mobilization in the sediment of Nanhu lake in Wuhan[D]. Wuhan:Huazhong Agricultural University,2011. 37-44.
    [9] Gchter R,Müller B. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface[J]. Limnology and Oceanography,2003,48(2):929-933.
    [10]王超,邹丽敏,王沛芳,等.典型城市浅水湖泊沉积物中磷与铁的形态分布及相关关系[J].环境科学,2008,29(12):3400-3404.Wang C,Zou L M,Wang P F,et al. Distribution and correlation of P and Fe fractions in sediments of typical urban shallow lakes[J]. Environmental Science,2008,29(12):3400-3404.
    [11]张仕军,齐庆杰,王圣瑞,等.洱海沉积物有机质、铁、锰对磷的赋存特征和释放影响[J].环境科学研究,2011,24(4):371-377.Zhang S J,Qi Q J,Wang S R,et al. Effects of organic matter,manganese and iron on phosphorus fractions and release in the sediments of Erhai lake[J]. Research of Environmental Sciences,2011,24(4):371-377.
    [12] Skoog A C,Arias-Esquivel V A. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon,phosphate,iron, and manganese[J]. Science of the Total Environment,2009,407(23):6085-6092.
    [13]阚丹.氧化还原过程对铁磷有效性的影响[D].北京:中国科学院研究生院,2011. 26-42.Kan D. Effect of oxidation-reduction process on availability of phosphorus bonded to iron oxides[D]. Beijing:Graduate University of Chinese Academy of Sciences,2011. 26-42.
    [14] Hupfer M, Lewandowski J. Oxygen controls the phosphorus release from lake sediments-a long-lasting paradigm in limnology[J]. International Review of Hydrobiology,2008,93(4-5):415-432.
    [15]代政,祁艳丽,唐永杰,等.上覆水环境因子对滨海水库沉积物氮磷释放的影响[J].环境科学研究,2016,29(12):1766-1772.Dai Z,Qi Y L,Tang Y J,et al. Effects of environmental factors of overlying water on the release of nitrogen and phosphorus from sediment of coastal reservoir[J]. Research of Environmental Sciences,2016,29(12):1766-1772.
    [16]王敬富,陈敬安,曾艳,等.微电极测量系统在湖泊沉积物-水界面生物地球化学过程研究中的应用[J].地球与环境,2013,41(1):65-70.Wang J F, Chen J A, Zeng Y, et al. Application of microelectrode measurement system in research on biogeochemical processes across the water-sediment interface in Hongfeng lake[J]. Earth and Environment,2013,41(1):65-70.
    [17]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002. 525-644.
    [18]胡凯,柯鹏振,吴永红,等.高原浅水湖泊沉积物中磷、氮形态化学研究[J].长江流域资源与环境,2005,14(4):507-511.Hu K,KE P Z,Wu Y H,et al. Forms of chemicals nitrogen and phosphorus in sediments in a shallow, plateau lake[J].Resources and Environment in the Yangtze Basin,2005,14(4):507-511.
    [19]傅德黔,汪志国,孙宗光.燃烧氧化-非分散红外吸收法测定废水中TOC[J].中国环境监测,2003,19(3):23-24,18.Fu D Q,Wang Z G,Sun Z G. Determination of total organic carbon in waste water by non-dispersive infrared absorption method[J]. Environmental Monitoring in China,2003,19(3):23-24,18.
    [20]刘球英,骆艳娥.改进Ferrozine法测定溶液中的二价铁、三价铁及总铁[J].科学技术与工程,2016,16(10):85-88.Liu Q Y,Luo Y E. Determination of Fe2+,Fe3+and total iron ion with improved Ferrozine UV-spectrophotometry[J]. Science Technology and Engineering,2016,16(10):85-88.
    [21] Ruban V,López-sánchez J F,Pardo P,et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-A synthesis of recent works[J]. Fresenius'Journal of Analytical Chemistry,2001,370(2-3):224-228.
    [22]望雪,程豹,杨正健,等.澜沧江流域沉积物间隙水-上覆水营养盐特征与交换通量分析[J].环境科学,2018,39(5):2126-2134.Wang X,Cheng B,Yang Z J,et al. Differences in diffusive fluxes of nutrients from sediment between the natural river areas and reservoirs in the Lancang river basin[J]. Environmental Science,2018,39(5):2126-2134.
    [23]范成新,周易勇,吴庆龙.湖泊沉积物界面过程与效应[M].北京:科学出版社,2013. 55-66
    [24]魏南,余德光,王广军,等.持续充氧对养殖池塘上覆水-泥水界面-沉积物间隙水中离子垂直分布的影响[J].水产学报,2017,41(7):1116-1125.Wei N,Yu D G,Wang G J,et al. Effect of aeration on vertical distribution of the ions in overlying and interstitial waters of microcosms paved with aquaculture sediment[J]. Journal of Fisheries of China,2017,41(7):1116-1125.
    [25]许昆明,司靖宇.适用于海洋沉积物间隙水中氧、锰(Ⅱ)、铁(Ⅱ)、硫分析的金汞齐微电极[J].分析化学,2007,35(8):1147-1150.Xu K M,Si J Y. Development of Hg-Au microelectrode for measuring O2,Mn2+,Fe2+,and S2-in marine sediment pore water[J]. Chinese Journal of Analytical Chemistry,2007,35(8):1147-1150.
    [26]李学刚,吕晓霞,孙云明,等.渤海沉积物中的"活性铁"与其氧化还原环境的关系[J].海洋环境科学,2003,22(1):20-24.Li X G,Lv X X,Sun Y M,et al. Relation of active iron and redox environments in the sediments of Bohai Sea[J]. Marine Environmental Science,2003,22(1):20-24.
    [27]徐洋.氧化还原环境制约湖泊沉积物内源磷释放过程的研究[D].贵阳:贵州大学,2015. 27-28.
    [28] Klein A R,Baldwin D S,Singh B,et al. Salinity-induced acidification in a wetland sediment through the displacement of clay-bound iron(II)[J]. Environmental Chemistry,2010,7(5):413-421.
    [29] Jensen D L,Boddum J K,Tjell J C,et al. The solubility of rhodochrosite(MnCO3)and siderite(Fe CO3)in anaerobic aquatic environments[J]. Applied Geochemistry,2002,17(4):503-511.
    [30] Wang Y,Sikora S,Kim H,et al. Effects of solution chemistry on the removal reaction between calcium carbonate-based materials and Fe(II)[J]. Science of the Total Environment,2013,443:717-724.
    [31]牛晓君,王计平.模拟沉积磷迁移转化行为的铁盐影响机制研究[J].环境科学,2009,30(12):3502-3508.Niu X J,Wang J P. Simulation study on behaviors of sediment phosphorus affected by iron ion[J]. Environmental Science,2009,30(12):3502-3508.
    [32] Caldeira C L,Ciminelli V S T,Osseo-Asare K. The role of carbonate ions in pyrite oxidation in aqueous systems[J].Geochimica et Cosmochimica Acta,2010,74(6):1777-1789.
    [33] Delarue F, Gogo S, Buttler A, et al. Indirect effects of experimental warming on dissolved organic carbon content in subsurface peat[J]. Journal of Soils and Sediments,2014,14(11):1800-1805.
    [34] Hindersmann I,Mansfeldt T. Trace element solubility in a multimetal-contaminated soil as affected by redox conditions[J].Water,Air,&Soil Pollution,2014,225(10):2158.
    [35]郭念,闫金龙,魏世强,等.三峡库区消落带典型土壤厌氧呼吸对铁还原及磷释放的影响[J].水土保持学报,2014,28(3):271-276.Guo N,Yan J L,Wei S Q,et al. Iron(Ⅲ)reduction and phosphorous releases in typical flooded soils from water-level fluctuation zones of Three Gorges Reservoirs areas[J]. Journal of Soil and Water Conservation,2014,28(3):271-276.
    [36] Schmeide K,Bernhard G. Sorption of Np(V)and Np(IV)onto kaolinite:Effects of pH,ionic strength,carbonate and humic acid[J]. Applied Geochemistry,2010,25(8):1238-1247.
    [37] Karvinen A,Lehtinen L,Kankaala P. Effects of Fe(Ⅲ)and organic matter additions on methanogenic activity and Fe(Ⅲ)reduction in boreal lake and wetland sediments[A]. In:EGU General Assembly 2013[C]. Vienna,Austria,2013.
    [38] Kizewski F R,Boyle P,Hesterberg D,et al. Mixed anion(phosphate/oxalate)bonding to iron(Ⅲ)materials[J]. Journal of the American Chemical Society,2010,132(7):2301-2308.
    [39]步青云.浅水湖泊溶解氧变化对沉积物磷、氮的影响[D].北京:中国环境科学研究院,2006. 52-60.
    [40]向速林,陶术平,吴代赦.鄱阳湖沉积物和水界面磷的交换通量[J].湖泊科学,2017,29(2):326-333.Xiang S L,Tao S P,Wu D C. Exchange fluxes of phosphorus at the sediment-water interface in Lake Poyang[J]. Journal of Lake Sciences,2017,29(2):326-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700