用户名: 密码: 验证码:
不同碳源对凡纳滨对虾育苗标粗水体生物絮团的结构、营养成分、细菌群落及其水质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of different carbon sources on the biofloc formation, nutritional ingredients and bacterial community and water quality in Litopenaeus vannamei culture tank
  • 作者:张哲 ; 杨章武 ; 葛辉 ; 陈辉辉 ; 卓吓晃
  • 英文作者:ZHANG Zhe;YANG Zhangwu;GE Hui;CHEN Huihui;ZHUO Xiahuang;Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province,Fisheries Research Institute of Fujian;Xiamen Xiaxinglong Seed Production Co., Ltd.;
  • 关键词:凡纳滨对虾 ; 生物絮团 ; 碳源 ; 氨基酸 ; 群落结构 ; 宏基因组测序
  • 英文关键词:Litopenaeus vannamei;;biofloc;;carbon sources;;amino acid;;microbial community structure;;metagenome sequencing
  • 中文刊名:水产学报
  • 英文刊名:Journal of Fisheries of China
  • 机构:福建省水产研究所福建省海洋生物增养殖与高值化利用重点实验室;厦门市厦兴龙水产种苗有限公司;
  • 出版日期:2018-11-02 13:58
  • 出版单位:水产学报
  • 年:2019
  • 期:03
  • 基金:凡纳滨对虾品种创新与健康种苗繁育产业化工程项目(2017-2020);; 海洋公益性行业科研专项(201205019-3);; “十三五”厦门市海洋经济创新发展示范项目(16 PFW034 SF02);; 2017年福建省海洋与渔业结构调整专项(2017 HYJG02)~~
  • 语种:中文;
  • 页:93-103
  • 页数:11
  • CN:31-1283/S
  • ISSN:1000-0615
  • 分类号:S968.22
摘要
为研究凡纳滨对虾育苗标粗阶段生物絮团形成所需要的适合碳源,设计3种不同碳源添加组(葡萄糖组、淀粉组和蔗糖组),每个处理组设置3个重复,实验期20 d,以分析不同碳源添加后对水体生物絮团的形成、营养成分、细菌群落结构及水质指标的影响。结果显示,在碳源添加量均为投喂量的80%时,形成的生物絮团可有效调节水质,降低水体中的氨氮和亚硝酸盐氮水平。3个碳源添加组水样中氨氮、亚硝酸盐氮和硝酸盐氮浓度显著低于对照组,淀粉组水样中氨氮、亚硝酸盐氮和硝酸盐氮浓度显著高于葡萄糖组和蔗糖组;最终对虾存活率统计结果显示,葡萄糖组、淀粉组、蔗糖组和对照组分别为72.9%、54.2%、69.8%和44.3%;淀粉组的生物絮团沉降体积(BFV)显著低于葡萄糖组,蔗糖组BFV最高,在13~15 d后3组均趋于稳定;葡萄糖组和蔗糖组的粗蛋白含量均显著高于淀粉组,葡萄糖组和蔗糖组则差异不显著;葡萄糖组和蔗糖组生物絮团中组氨酸、精氨酸、蛋氨酸等必需氨基酸和天冬氨酸、谷氨酸、丙氨酸等非必需氨基酸含量都显著高于淀粉组;葡萄糖组、淀粉组和蔗糖组的必需氨基酸指数(EAAI)值分别为0.93、0.89和0.92。3种类型生物絮团在门级水平的细菌群落共有18余种,其中变形菌门和拟杆菌门在各组占有比例均最高,淀粉组拟杆菌门含量显著高于其他2组,蔗糖组浮霉菌门和放线菌门含量显著高于葡萄糖组和淀粉组。研究表明,添加不同碳源可影响水体生物絮团的形成、营养成分、细菌群落结构和多样性,不同程度地改善水质。以必须氨基酸指数及存活率为评价指标,则葡萄糖和蔗糖都是凡纳滨对虾育苗标粗水体中适宜的碳源选择。
        In order to study the suitable carbon source required by the biofloc formation in Litopenaeus vannamei culture tank, 3 groups added with 3 carbon sources(glucose group, starch group and sucrose group) were designed.Each treatment group set up 3 replicates. The culture period was 20 d. The experiment analyzed influences of adding different carbon sources on biofloc formation, nutritional ingredients, microflora and water quality indexes.The findings showed that when carbon additive amount was 80% of feeding, the biofloc formation could effectively regulate water quality and reduce ammonia nitrogen and nitrite nitrogen level in water body. The concentrations of ammonia nitrogen, nitrite nitrogen and nitrate nitrogen concentrations in three carbon sources addition groups were significantly lower than those of control group. The ammonia nitrogen, nitrite nitrogen and nitrate nitrogen concentrations in the starch group were significantly higher than those of the glucose group and sucrose group. The survival rates of the glucose group, starch group, sucrose group and control group were 72.9%,54.2%, 69.8% and 44.3% respectively. The biofloc settling volume(BFV) in the starch group was significantly lower than the glucose group, while BFV in the sucrose group was the highest. After 13-15 d, three groups tended to be stable. Crude protein contents in glucose group and sucrose group were significantly higher than that of the starch group. There was no significant difference in the glucose group and sucrose group. The essential amino acids-histidine, arginine, methionine and the nonessential amino acids-aspartate, glusate, alanine in the starch group was lower than the glucose group and sucrose group. The essential amino acid index(EAAI) in the glucose group, starch group and sucrose group was calculated at 0.93, 0.89 and 0.92, respectively. The high-throughput sequencing results showed that there were more than 18 species of bacterial community at the phylum level.Proteobacteria and Bacterioidetes in three types of Biofloc had the highest ratio. In the starch group, Bacteriodetes content was significantly higher than other groups, while Planctomycetes and Actinobacteria contents in the sucrose group were obviously higher than the glucose group and starch group. Therefore, different additions of carbon sources in the L. vannamei culture tank affected the biofloc formation, nutritional ingredients, microbial community structure and diversities and improved water quality in different degrees. With the EAAI as the evaluation index, glucose and sucrose can be used as the suitable carbon source choices for L. vannamei culture pond.
引文
[1]Wasielesky W,Atwood H,Stokes A,et al.Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei[J].Aquaculture,2006,258(1):396-403.
    [2]Avnimelech Y.Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds[J].Aquaculture,2007,264(1):140-147.
    [3]赵志刚,罗亮,王常安,等.不同鲤养殖模式生物絮团系统中鱼体的生长及水质[J].水产学报,2017,41(1):99-108.Luo Z G,Luo L,Wang C A,et al.Fish growth performance and water quality in different carp stocking modes biofloc systems[J].Journal of Fisheries of China,2017,41(1):99-108(in Chinese).
    [4]Emerenciano M,Ballester E L,Cavalli R O,et al.Effect of biofloc technology(BFT)on the early postlarval stage of pink shrimp Farfantepenaeus paulensis:Growth performance,floc composition and salinity stress tolerance[J].Aquaculture International,2011,19(5):891-901.
    [5]Ju Z Y,Forster I,Conquest L,et al.Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles[J].Aquaculture Research,2008,39(2):118-133.
    [6]Izquierdo M,Forster I,Divakaran S,et al.Effect of green and clear water and lipid source on survival,growth and biochemical composition of Pacific white shrimp Litopenaeus vannamei[J].Aquaculture Nutrition,2006,12(3):192-202.
    [7]Ekasari J,Crab R,Verstraete W.Primary nutritional content of bio-flocs cultured with different organic carbon sources and salinity[J].HAYATI Journal of Biosciences,2010,17(3):125-130.
    [8]Browdy C L,Bratvold D,Stokes A D,et al.Perspectives on the application of closed shrimp culture systems[M].USA:The World Aquaculture Society Baton Rouge,2001,pp.20-34.
    [9]Samocha T M,Patnaik S,Speed M,et al.Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei[J].Aquacultural Engineering,2007,36(2):184-191.
    [10]Burford M A,Thompson P J,McIntosh R P.The contribution of flocculated material to shrimp(Litopenaeus vannamei)nutrition in a high-intensity,zeroexchange system[J].Aquaculture,2004,232(1-4):525-537.
    [11]李卓佳,杨莺莺,杨铿,等.对虾养殖水处理专题之四:对虾养殖水环境无公害高效调控技术[J].中国水产,2008(9):55-57.Li Z J,Yang Y Y,Yang J,et al.The fourth technology of water environmental pollution control of shrimp aquaculture[J].China Fisheries,2008(9):55-57(in Chinese).
    [12]刘杜娟,潘晓艺,尹文林,等.生物絮团在罗氏沼虾育苗中的应用[J].上海海洋大学学报,2013,22(1):47-53.Liu D J,Pan X Y,Yin W L,et al.Bio-flocs technology application in breeding of Macrobrachium rosenbergii[J].Journal of Shanghai Ocean University,2013,22(1):47-53(in Chinese).
    [13]Crab R,Kochva M,Verstraete W,et al.Bio-flocs technology application in over-wintering of tilapia[J].Aquaculture Engineering,2009,40(3):105-112.
    [14]卢炳国,王海英,谢骏,等.不同C/N对草鱼池生物絮团的形成及水质的影响研究[J].水产学报,2013,37(8):1220-1228.Lu B G,Wang H Y,Xie J,et al.Effect of C/N ratio on bioflocs formation and water quality inzero-water exchange grass crap tanks[J].Journal of Fisheries of China,2013,37(8):1220-1228(in Chinese).
    [15]李朝兵.生物絮团作为鳙饵料的研究与应用[D].上海:上海海洋大学,2012.Li C B.The study and application of bioflocs as Aristichthys nobilis Richardson bait[D].Shanghai:Shanghai Ocean University,2012(in Chinese).
    [16]Hollender J,van der Krol D,Kornberger L,et al.Effect of different carbon sources on the enhanced biological phosphorus removal in a sequencing batch reactor[J].World Journal of Microbiology and Biotechnology,2002,18(4):359-364.
    [17]Oehmen A,Yuan Z,Blackall L L,et al.Short-term effects of carbon source on the competition of polyphosphate accumulating organisms and glycogen accumulating organisms[J].Water Science and Technology,2004,50(10):139-144.
    [18]Wilén B M,Nielsen J L,Keiding K,et al.Influence of microbial activity on the stability of activated sludge flocs[J].Colloids and Surfaces B:Biointerfaces,2000,18(2):145-156.
    [19]Crab R,Chielens B,Wille M,et al.The effect of different carbon sources on the nutritional value of bioflocs,a feed for Macrobrachium rosenbergii postlarvae[J].Aquaculture Research,2010,41(4):559-567.
    [20]McIntosh D,Samocha T M,Jones E R,et al.The effect of a commercial bacterial supplement on the highdensity culturing of Litopenaeus vannamei with a lowprotein diet in an outdoor tank system and no water exchange[J].Aquacultural Engineering,2000,21(3):215-227.
    [21]Ray A J,Lewis B L,Browdy C L,et al.Suspended solids removal to improve shrimp(Litopenaeus vannamei)production and an evaluation of a plant-based feed in minimal-exchange,superintensive culture systems[J].Aquaculture,2010,299(1-4):89-98.
    [22]Martínez-Córdova L R,Martínez-Porchas M,Emerenciano M G C,et al.From microbes to fish the next revolution in food production[J].Critical Reviews in Biotechnology,2017,37(3):287-295.
    [23]农业部渔业局.2013中国渔业年鉴[M].北京:中国农业出版社,2013:165-210.Bureau of Fisheries of the Ministry of Agriculture.China Fishery Statistical Yearbook 2013[M].Beijing:China Agriculture Press,2013:165-210(in Chinese).
    [24]Xu W J,Pan L Q.Effects of bioflocs on growth performance,digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zerowater exchange tanks manipulating C/N ratio in feed[J].Aquaculture,2012,356-357:147-152.
    [25]Manush S M,Pal A K,Das T,et al.Dietary high protein and vitamin C mitigate stress due to chelate claw ablation in Macrobrachium rosenbergii males[J].Comparative Biochemistry and Physiology-Part A:Molecular&Integrative Physiology,2005,142(1):10-18.
    [26]Arai S.A purified test diet for Coho salmon,Oncorhynchus kisutch,fry[J].Nippon Suisan Gakkaishi,1981,47(4):547-550.
    [27]Pe?aflorida V D.An evaluation of indigenous protein sources as potential component in the diet formulation for tiger prawn,Penaeus monodon,using essential amino acid index(EAAI)[J].Aquaculture,1989,83(3-4):319-330.
    [28]Tacon A G J,Cody J J,Conquest L D,et al.Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei(Boone)fed different diets[J].Aquaculture Nutrition,2002,8(2):121-137.
    [29]Avnimelech Y.Biofloc Technology:A Practical Guide Book[M].2 nd ed.Baton Rouge,US:The World Aquaculture Society,2012.
    [30]Van Wyk P,Scarpa J.Water quality requirements and management[M]//Van Wyk P,Davis-Hodgkins M,Laramore R,et al.Farming marine shrimp in recirculating freshwater systems.Tallahassee,FL,USA:Florida Department of Agriculture and Consumer Services,1999:141-162.
    [31]Hari B,Madhusoodana Kurup B,Varghese J T,et al.The effect of carbohydrate addition on water qualityand the nitrogen budget in extensive shrimp culture systems[J].Aquaculture,2006,252(2-4):248-263.
    [32]Schneider O,Sereti V,Eding E H,et al.Analysis of nutrient flows in integrated intensive aquaculture systems[J].Aquacultural Engineering,2005,32(3-4):379-401.
    [33]Asaduzzaman M,Wahab M A,Verdegem M C J,et al.C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds[J].Aquaculture,2008,280(1-4):117-123.
    [34]沈萍.微生物学[M].北京:高等教育出版社,2000:129-134.Shen P.Microbiology[M].Beijing:Advanced Education Press,2000:129-134(in Chinese).
    [35]Xu W J,Pan L Q,Sun X H,et al.Effects of bioflocs on water quality,and survival,growth and digestive enzyme activities of Litopenaeus vannamei(Boone)in zerowater exchange culture tanks[J].Aquaculture Research,2013,44(7):1093-1102.
    [36]Ebeling J M,Timmons M B,Bisogni J J.An engineering analysis of the stoichiometry of autotrophic,heterotrophic bacterial control of ammonia-nitrogen in zeroexchange marine shrimp production systems[J].International Journal of Recirculating Aquaculture,2009,10(1):28-37.
    [37]De Schryver P,Crab R,Defoirdt T,et al.The basics of bio-flocs technology:the added value for aquaculture[J].Aquaculture,2008,277(3-4):125-137.
    [38]Wilén B M,Balmér P.The effect of dissolved oxygen concentration on the structure,size and size distribution of activated sludge flocs[J].Water Research,1999,33(2):391-400.
    [39]Wilén B M,Jin B,Lant P.The influence of key chemical constituents in activated sludge on surface and flocculating properties[J].Water Research,2003,37(9):2127-2139.
    [40]Ballester E L C,Abreu P C,Cavalli R O,et al.Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system[J].Aquaculture Nutrition,2010,16(2):163-172.
    [41]Azim M E,Little D C.The biofloc technology(BFT)in indoor tanks:water quality,biofloc composition,and growth and welfare of Nile tilapia(Oreochromis niloticus)[J].Aquaculture,2008,283(1-4):29-35.
    [42]Wilén B M,Onuki M,Hermansson M,et al.Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability[J].Water Research,2008,42(8-9):2300-2308.
    [43]Sharathchandra K,Rajashekhar M.Total lipid and fatty acid composition in somefreshwater cyanobacteria[J].Journal of Algal Biomass Utilization,2011,2(2):83-97.
    [44]Maslova I P,Mouradyan E A,Lapina S S,et al.Lipid fatty acid composition and thermophilicity of cyanobacteria[J].Russian Journal of Plant Physiology,2004,51(3):353-360.
    [45]Verma N M,Mehrotra S,Shukla A,et al.Prospective of biodiesel production utilizing microalgae as the cell factories:a comprehensive discussion[J].African Journal of Biotechnology,2010,9(10):1402-1411.
    [46]Bodík I,Bl??ákováA,Sedlá?ek S,et al.Biodiesel waste as source of organic carbon for municipal WWTPdenitrification[J].Bioresource Technology,2009,100(8):2452-2456.
    [47]Mente E,Coutteau P,Houlihan D,et al.Protein turnover,amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei.Effects of dietary protein source[J].Journal of Experimental Biology,2002,205(20):3107-3122.
    [48]杨元昊,李维平,龚月生,等.兰州鲇肌肉生化成分分析及营养学评价[J].水生生物学报,2009,33(1):54-60.Yang Y H,Li W P,Gong Y S,et al.Analysis of biochemical composition and evaluation of nutritive quality in muscles of Silurus lanzhouensis[J].Acta Hydrobiologica Sinica,2009,33(1):54-60(in Chinese).
    [49]怀明燕,王晨辉,李坤林.凡纳滨对虾对蛋白质和氨基酸营养需求的研究进展[J].饲料工业,2010,31(S1):55-60.Huai M Y,Wang C H,Li K L.A review on the requirements of protein and amino acids of Litopenaeus vannamei[J].Feed Industry,2010,31(S1):55-60(in Chinese).
    [50]Sakami T,Fujioka Y,Shimoda T.Comparison of microbial community structuresin intensive and extensive shrimp culture ponds and a mangrove area in Thailand[J].Fisheries Science,2008,74(4):889-898.
    [51]Wagner M,Amann R,Lemmer H,et al.Probing activated sludge with oligonucleotides specific for proteobacteria:inadequacy of culture-dependent methods for describing microbial community structure[J].Applied and Environmental Microbiology,1993,59(5):1520-1525.
    [52]Miura Y,Hiraiwa M N,Ito T,et al.Bacterial community structures in MBRs treating municipal wastewater:Relationship between community stability and reactor performance[J].Water Research,2007,41(3):627-637.
    [53]Wagner M,Rath G,Amann R,et al.Insitu identification of ammonia-oxidizing bacteria[J].Systematic and Applied Microbiology,1995,18(2):251-264.
    [54]Daims H,Brühl A,Amann R,et al.The domain-specific probe EUB338 is insufficient for the detection of all Bacteria:development and evaluation of a more comprehensive probe set[J].Systematic and Applied Microbiology,1999,22(3):434-444.
    [55]Das S,Ward L R,Burke C.Prospects of using marine actinobacteria as probiotics in aquaculture[J].Applied Microbiology and Biotechnology,2008,81(3):419-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700