用户名: 密码: 验证码:
铁碳微电解耦合反硝化菌削减河道黑臭底泥污染物及净化水质的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reduction of Pollutants in Black-Odorous River Sediment and Purification of Water with Iron-carbon Micro-Electrolysis Coupled with Denitrifying Bacteria
  • 作者:王颖 ; 林嘉薇 ; 胡勇有
  • 英文作者:WANG Ying;LIN Jiawei;HU Yongyou;School of Environmental Science and Engineering,South China University of Technology∥The MOE Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters;
  • 关键词:黑臭河道 ; Fe/C微电解 ; 反硝化菌
  • 英文关键词:black-odorous river;;Fe/C internal micro-electrolysis;;denitrifying bacteria
  • 中文刊名:华南师范大学学报(自然科学版)
  • 英文刊名:Journal of South China Normal University(Natural Science Edition)
  • 机构:华南理工大学环境与能源学院∥工业聚集区污染控制与生态修复教育部重点实验室;
  • 出版日期:2019-06-28 18:11
  • 出版单位:华南师范大学学报(自然科学版)
  • 年:2019
  • 期:03
  • 基金:广东省科技计划项目(2015B020235009)
  • 语种:中文;
  • 页:52-61
  • 页数:10
  • CN:44-1138/N
  • ISSN:1000-5463
  • 分类号:X52
摘要
通过向河道中投加铁碳填料和反硝化菌复合包的方式,构建了铁碳微电解耦合反硝化菌曝气辅助原位削减河道黑臭底泥及净化水质技术.模拟实验结果表明:当铁碳填料投加30 g/kg、反硝化菌接种量为15 mg/kg、曝气量为60 m L/min和曝气时间为9 h/d的最佳组合下运行仅28 d后,上覆水COD、NH4+-N、TN和TP去除率分别达到85.7%、98.6%、65.7%和96.4%,稳定达到地表水Ⅳ类水标准;底泥TOC去除率达48.8%;底泥中BD-P和Na OH-P组分显著增加;底泥可转化态N含量显著减少;表层5~10 cm底泥由深黑色变为浅褐色.在耦合体系中,铁碳微电解可促进底泥及上覆水中碳、氮磷污染物的转化与去除;反硝化菌促进脱氮反应;曝气激活底泥土著微生物的活性.三者的协同作用削减黑臭底泥污染物并净化水质,为铁碳微电解耦合反硝化菌原位削减河道黑臭底泥污染物及净化水质技术提供理论依据.
        The technology of Fe/C micro-electrolysis coupled with denitrifying bacteria and assisted with in-situ aeration was constructed for reduction of black-odorous river sediment and purification of water by adding iron-carbon filler and denitrifying bacteria compound package to the urban river. The simulation experiment results showed that under the optimal combination of the iron-carbon filler being 30 g/kg,the inoculation amount of denitrifying bacteria being 15 mg/kg,the aeration rate being 60 m L/min,and the aeration time being 9 h/d and after running for 28 d,the removal rates of COD,NH4+-N,TN and TP in the overlying water were 85.7%,98.6%,65.7% and96.4%,respectively. The COD,NH4+-N and TP indicators reached the Class IV standards for surface water. The removal rate of TOC in sediment was 48. 8%; the BD-P and NaOH-P components increased significantly; the transferable nitrogen in the sediment decreased significantly; the surface 5-10 cm sediment changed from dark black to light brown. In the coupling system,iron-carbon micro-electrolysis was used to promote the conversion and removal of carbon,nitrogen and phosphorus pollutants in the sediment and overlying water; the denitrifying bacteria were used to promote denitrification; the aeration was used to activate the indigenous microbial activity of the sediment; and the three factors worked synergistically to reduce pollutants in black-odorous sediment and purify water. This study provides a theoretical basis for the in-situ reduction of pollutants in black-odorous river sediment and purification of water with iron-carbon micro-electrolysis coupled with denitrifying bacteria.
引文
[1] LIANG Z,SIEGERT M,FANG W,et al. Blackening and odorization of urban rivers:a bio-geochemical process[J].FEMS Microbiology Ecology,2017,94(3):fix180/1-12.
    [2] BONAGLIA S,RAMO R,MARZOCCHI U,et al. Capping with activated carbon reduces nutrient fluxes,denitrification and meiofauna in contaminated sediments[J]. Water Research,2019,148:515-525.
    [3] YU J H,DING S M,ZHONG J C,et al. Evaluation of simulated dredging to control internal phosphorus release from sediments:focused on phosphorus transfer and resupply across the sediment-water interface[J]. Science of the Total Environment,2017,592:662-673.
    [4] ALP E,MELCHING C S. Allocation of supplementary aeration stations in the Chicago waterway system for dissolved oxygen improvement[J]. Journal of Environmental Management,2011,92(6):1577-1583.
    [5] HE Z H,LONG X X,LI L Y,et al. Temperature response of sulfide/ferrous oxidation and microbial community in anoxic sediments treated with calcium nitrate addition[J]. Journal of Environmental Management,2017,191:209-218.
    [6] TANG Y Q,LI M,XU D N,et al. Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment[J]. Environmental Science and Pollution Research,2018,25(6):5980-5993.
    [7] FU D,SINGH R P,YANG X D,et al. Sediment in-situ bioremediation by immobilized microbial activated beads:pilot-scale study[J]. Journal of Environmental Management,2018,226:62-69.
    [8] XING W,LI D S,LI J L,et al. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification[J]. Bioresource Technology,2016,211:240-247.
    [9] DENG S H,LI D S,YANG X,et al. Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition[J]. Bioresource Technology,2016,219:677-686.
    [10]国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社,2002.
    [11]土壤有机碳的测定:HJ/T 615-2011[S].北京:中国环境科学出版社,2011.
    [12]王圣瑞,金相灿,焦立新.不同污染程度湖泊沉积物中不同粒级可转化态氮分布[J].环境科学研究,2007,20(3):52-57.WANG S R,JIN X C,JIAO L X. Distribution of transferable nitrogen in different grain size from the different trophic levellake sediments[J]. Research of Environmental Sciences,2007,20(3):52-57.
    [13] KAISERLI A,VOUTSA D,SAMARA C. Phosphorus fractionation in lake Sediments-Lakes Volvi and Koronia N Greece[J]. Chemosphere,2002,46(8):1147-1155.
    [14]林舒康.固定化微生物原位修复黑臭水体底泥的应用研究[D].扬州:扬州大学,2018.LIN S K. Study on application of innobilized microorganisms in in-situ repair of black odorous water and sediment[D].Yangzhou:Yangzhou University,2018.
    [15] SAVIO D,SINCLAIR L,IJAZ U Z,et al. Bacterial diversity along a 2 600 km river continuum[J]. Environmental Microbiology,2015,17(12):4994-5007.
    [16] OUYANG E M,LU Y,OUYANG J T,et al. Bacterial community analysis of anoxic/aeration(A/O)system in a combined process for Gibberellin wastewater treatment[J]. PloS One,2017,12(10):1-15.
    [17] LI X,ZHANG M M,LIU F,et al. Bacterial community dynamics in a Myriophyllum elatinoides purification system for swine wastewater in sediments[J]. Applied Soil Ecology,2017,119:56-63.
    [18] XIE Z F,WANG Z W,WANG Q Y,et al. An anaerobic dynamic membrane bioreactor(An DMBR)for landfill leachate treatment:performance and microbial community identification[J]. Bioresource Technology,2014,161:29-39.
    [19] WEISENER C,LEE J M,CHAGANTI S R,et al. Investigating sources and sinks of N2O expression from freshwater microbial communities in urban watershed sediments[J]. Chemosphere,2017,188:697-705.
    [20] LUO J H,LIANG H,YAN L J,et al. Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality[J]. Bioresource Technology,2013,148:189-195.
    [21] SHAO M F,ZHANG T,FANG H H P. Sulfur-driven autotrophic denitrification:diversity,biochemistry,and engineering applications[J]. Applied Microbiology and Biotechnology,2010,88(5):1027-1042.
    [22] ZHANG C,YUAN Q,LU Y H. Inhibitory effects of ammonia on syntrophic propionate oxidation in anaerobic digester sludge[J]. Water Research,2018,146:275-287.
    [23] WANG D P,LI T,HUANG K L,et al. Roles and correlations of functional bacteria and genes in the start-up of simultaneous Anammox and denitrification system for enhanced nitrogen removal[J]. Science of the Total Environment,2019,655:1355-1363.
    [24] ZHOU S L,ZHANG Y R,HUANG T L,et al. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir[J].Science of the Total Environment,2019,651:998-1010.
    [25] ZHENG X Y,JIN M Q,ZHOU X,et al. Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C,N,and P in salty permitted effluent of wastewater treatment plant[J]. Science of the Total Environment,2019,649:21-30.
    [26]廖绍安,黄捷畅,王安利,等.碳源和盐度对好氧反硝化细菌脱氮特性的影响[J].华南师范大学学报(自然科学版),2016,48(6):30-36.LIAO S A,HUANG J C,WANG A L,et al. Effect of carbon source and salinity on nitrogen removal of an aerobic denitrifier[J]. Journal of South China Normal University(Natural Science Edition),2016,48(6):30-36.
    [27] ZHANG L L,TANG Z,ZHANG S J,et al. Effects of artificial aeration and iron inputs on the transformation of carbon and phosphorus in a typical wetland soil[J]. Journal of Soils and Sediments,2018,18(11):3244-3255.
    [28]周永胜,王立立,李取生,等.南沙河口湿地沉积物对磷的吸附特性研究[J].华南师范大学学报(自然科学版),2011(1):74-79.ZHOU Y S,WANG L L,LI Q S,et al. phosphorus adsorption characteristics in the sediments of nansha estuary wetland[J]. Journal of South China Normal University(Natural Science Edition),2011(1):74-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700