用户名: 密码: 验证码:
CMC改性的纳米Fe/Cu双金属去除2,4-二氯苯酚的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on removal of 2,4-dichlorophenol by CMC modified nanoscale Fe/Cu bimetal
  • 作者:潘煜 ; 孙力平 ; 张婷婷 ; 刘楠楠 ; 王栋 ; 王晨晨 ; 邱春生 ; 王少坡
  • 英文作者:PAN Yu;SUN Liping;ZHANG Tingting;LIU Nannan;WANG Dong;WANG Chenchen;QIU Chunsheng;WANG Shaopo;School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology;
  • 关键词:Fe/Cu双金属 ; CMC改性 ; 2 ; 4-二氯苯酚 ; 脱氯 ; 活性位点
  • 英文关键词:Fe/Cu bimetal;;CMC modification;;2,4-dichlorophenol;;dechlorination;;active spot
  • 中文刊名:环境科学学报
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:天津城建大学环境与市政工程学院天津市水质科学与技术重点实验室;
  • 出版日期:2018-10-23 14:25
  • 出版单位:环境科学学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金资助项目(No.51478292)
  • 语种:中文;
  • 页:164-172
  • 页数:9
  • CN:11-1843/X
  • ISSN:0253-2468
  • 分类号:X703
摘要
为解决纳米零价金属在水中暴露出的极易聚集与氧化的问题,本研究使用铜作为纳米零价铁(NZVI)的复合金属,制得纳米Fe/Cu双金属,并用羧甲基纤维素钠(CMC)对其包覆改性.使用扫描电子显微镜、X射线衍射以及氮气吸附/脱附等温线对改性前后的双金属进行表征.结果表明,改性之后的材料具有更大的尺寸以及比表面积,且抗氧化性得到显著增强.材料的沉降实验以及对2,4-二氯苯酚(2,4-DCP)降解实验的结果揭示,CMC的包覆比对改性后双金属的分散性与反应活性影响较大.当包覆比为80%时,双金属的分散稳定性最强,释放的活性位点个数最多,表现为最高的反应活性.此时脱氯效率达到90.3%,且脱氯过程和产物发生明显改变.
        In order to solve the problem that nano zero-valent metal is easily aggregated and oxidized in water, the nanoscale Fe/Cu bimetal was prepared by using copper as the composite metal of nano zero-valent iron(NZVI) and modified by carboxymethylcellulose sodium(CMC) in this research. The bimetal before and after modification was characterized using scanning electron microscope, X-ray diffraction and nitrogen adsorption/desorption isotherms. The results showed that the modified bimetal had larger size and specific surface area, and the oxidation resistance was significantly enhanced. The results of sedimentation test and degradation experiment of 2,4-dichlorophenol(2,4-DCP) showed that the cladding proportion of CMC had obvious influence on the dispersion and reactivity of bimetal after modification. When the cladding proportion of CMC was 80%, the modified bimetal represented the strongest stability, the largest number of active spots, and the highest reactivity. Meanwhile, the dechlorination efficiency could reach 90.3%, and the dechlorination process and product were obviously changed.
引文
陈静, 陈海, 金歆, 等. 2017. 纳米零价铁降解水中四氯化碳的试验研究[J]. 环境科学学报, 37(2):610-616
    And C B W, Zhang W. 1997. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 31(18):9602-9607
    Chen S Y, Chen W H, Shih C J. 2008. Heavy metal removal from wastewater using zero-valent iron nanoparticles.[J]. Water Science & Technology, 58(10):1947-1954
    Chunming Su ? A, Puls? R W. 1999. Kinetics of Trichloroethene Reduction by Zerovalent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products[M]// Introduction to the physics of many-body systems. Изд-во Иностр. лит. 163-168
    Cirtiu C M, Raychoudhury T, Ghoshal S, et al. 2011. Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 390(1):95-104
    Comba S, Sethi R. 2009. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum[J]. Water Research, 43(15):3717-26
    Fang Y, Al-Abed S R. 2008. Dechlorination kinetics of monochlorobiphenyls by Fe/Pd: effects of solvent, temperature, and PCB concentration[J]. Applied Catalysis B Environmental, 78(3/4): 371-380
    Feng He and, Zhao D. 2005. Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water[J]. Environmental Science & Technology, 39(9):3314-3320
    冯婧微,徐英侠,兰希平,等.2014.纳米零件铁的改性及其应用研究进展[J].材料导报,28(15):83-86,97
    Feng J, Yingxia X U, Lan X, et al. 2014.Advances in Modification and Application of Nanoscale Zero-valent Iron[J]. Materials Review
    Gillham R W, O′Hannesin S F. 1994. Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron[J]. Groundwater, 32(6):958-967
    Hang J I, Xian H E, Cao X, et al. 2013. Removal of Chromium(VI) in Water by Carboxymethyl Cellulose Stabilized Nano Zero-valent Iron[J]. Geoscience, 27(6):1484-1488
    Hurdzan C M, Lanno R P. 2009. Determining exposure dose in soil: The effect of modifying factors on chlorinated benzene toxicity to earthworms[J]. Chemosphere, 76(7):946-951
    Jia H, Wang C. 2012. Adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) on a multi-functional organo-smectite templated zero-valent iron composite[J]. Chemical Engineering Journal, 191(5):202-209
    蒋婷, 鲍玥, 李威, 等. 2017. nZVI/AC复合材料对水中锑的去除[J]. 环境科学, (11):4632-4640
    Kanel S R, Goswami R R, Clement T P, et al. 2007. Two Dimensional Transport Characteristics of Surface Stabilized Zero-valent Iron Nanoparticles in Porous Media[J]. Environmental Science & Technology, 42(3):896-900
    Keith L, Telliard W. 2003. ES&T Special Report: Priority pollutants: I-a perspective view[J]. Environmental Science & Technology, 13(4):416-423
    Laumann S, Mici. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.[J]. Water Research, 50(1):70-79
    林英杰, 张硕, 孙力平, 等. 2016. VB12协同Fe/Cu双金属去除二氯甲烷过程调控与机理[J]. 中国环境科学, 36(9):2650-2657
    Lien H L, Zhang W X. 1999. Transformation of Chlorinated Methanes by Nanoscale Iron Particles[J]. Journal of Environmental Engineering, 125(11):1042-1047
    Shi L N, Zhang X, Chen Z L. 2011. Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Research, 45(2):886-892
    Mallát T, Bodnár Z, Petró J. 1991. Reduction by dissolving bimetals[J]. Tetrahedron, 47(3):441-446
    Nam S, Tratnyek P G. 2000. Reduction of azo dyes with zero-valent iron[J]. Water Research, 34(6):1837-1845
    Sahu R S, Bindumadhavan K, Doong R. 2017. Boron doped reduced graphene oxide based bimetallic Ni/Fe nanohybrids for rapid dechlorination of trichloroethylene[J]. Environmental Science Nano, 4(3): 565-576
    Scherer M M, Johnson K M, Westall J C, et al. 2001. Mass transport effects on the kinetics of nitrobenzene reduction by iron metal.[J]. Environmental Science & Technology, 35(13):2804-2811
    Schrick B, Hydutsky B W, Blough J L, et al. 2004. Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater[J]. Chemistry of Materials, 16(11):2187-2193
    Shahwan T, üzüm, C?, Erog?Lu A E, et al. 2010. Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions.[J]. Applied Clay Science, 47(3):257-262
    Sing K S W. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure & Applied Chemistry, 57(4):603-619
    Sirk K M, Saleh N B, Phenrat T, et al. 2009. Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models.[J]. Environmental Science & Technology, 43(10):3803-8308
    Song H, Carraway E R. 2005. Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions.[J]. Environmental Science & Technology, 39(16):6237-6245
    Sun Q, Zhou H Y, Cao M H, et al. 2012. Degradation of 2,4-Dichlorophenol in Aqueous Solution by ZVI/EDDS/Air System[J]. Environmental Science, 33(11):3833-3839
    Sun Y P, Li X Q, Zhang W X, et al. 2007. A method for the preparation of stable dispersion of zero-valent iron nanoparticles[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 308(1):60-66
    Sun Y, Yue Q, Gao B, et al. 2013. Adsorption of hexavalent chromium on Arundo donax Linn, activated carbon amine-crosslinked copolymer[J]. Chemical Engineering Journal, 217(2):240-247
    Wang J, Qian Y. 1999. Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels[J]. Chemosphere, 38(13):3109-3117
    Wang W, Zhou M H, Jin Z H, et al. 2010. Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation.[J]. Journal of Hazardous Materials, 173(1/3):724-730
    Wang X, Zhu M, Liu H, et al. 2013. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol[J]. Science of the Total Environment, 449: 157-167
    Wang Z, Huang W, Peng P A, et al. 2015. Rapid dechlorination of 1,2,3,4-TCDD by Ag/Fe bimetallic particles[J]. Chemical Engineering Journal, 273: 465-471
    Wei J, Xu X, Liu Y, et al. 2006. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters[J]. Water Research, 40(2):348-354
    Wu H, Feng Q. 2017. Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride[J]. Journal of Environmental Sciences, 54(4): 346-357
    Yang G C, Lee H L. 2005. Chemical reduction of nitrate by nanosized iron: kinetics and pathways[J]. Water Research, 39(5):884-894
    Yang M X, Sutapa S, Bent E B, et al. 1997. Degradation of Multiply-Chlorinated Hydrocarbons on Cu(100)[J]. Langmuir, 13(2): 127-137
    Zhao X, Liu W, Cai Z, et al. 2016. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J]. Water Research, 100:245-266
    Zhao X, Liu W, Cai Z, et al. 2016. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J]. Water Research, 100:245-266
    Zhou Z, Ruan W, Huang H, et al. 2016. Fabrication and characterization of Fe/Ni nanoparticles supported by polystyrene resin for trichloroethylene degradation[J]. Chemical Engineering Journal, 283: 730-739
    Zhu M, Wang X, Yang J, et al. 2013. Study on the physicochemical properties of poly(methylmethacrylate) (PMMA) modified Pd/Fe nanocomposites: Roles of PMMA and PMMA/ethanol[J]. Applied Surface Science, 282(10):851-861
    张永祥, 常杉, 李飞, 等. 2017. 稳定型纳米零价铁去除地下水中2,4-二氯苯酚[J]. 环境科学, 38(6):2385-2392
    曾宪委, 刘建国, 聂小琴. 2013. 基于零价铁的双金属体系对六氯苯还原脱氯研究[J]. 环境科学, 34(1): 182-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700