用户名: 密码: 验证码:
济南市典型机动车的尾气颗粒物污染特征与影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on pollution characteristics and the influencing factors of exhaust particles from typical vehicles in Jinan
  • 作者:李娟 ; 王新锋 ; 薛丽坤 ; 高晓梅 ; 孙雷 ; 王文兴
  • 英文作者:LI Juan;WANG Xinfeng;XUE Likun;GAO Xiaomei;SUN Lei;WANG Wenxing;Shandong University, Environment Research Institute;Jinan University, School of Water Resources and Environment;
  • 关键词:机动车尾气 ; 颗粒物 ; 污染特征 ; 影响因素 ; 双怠速法
  • 英文关键词:vehicle exhaust;;particulate matter;;pollution characteristics;;influence factors;;double idle method
  • 中文刊名:环境科学学报
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:山东大学环境研究院;济南大学水利与环境学院;
  • 出版日期:2018-08-27 15:32
  • 出版单位:环境科学学报
  • 年:2019
  • 期:01
  • 基金:国家重点研发计划(No.2016YFC0200500);; 国家自然科学基金(No.41775118)
  • 语种:中文;
  • 页:37-45
  • 页数:9
  • CN:11-1843/X
  • ISSN:0253-2468
  • 分类号:X734.2
摘要
采用便携式仪器,借鉴双怠速尾气检测法,利用自行设计的尾气采样装置,选择济南市区道路上10辆不同类型的机动车,现场测量尾气颗粒物的质量浓度和数浓度.基于实验数据,分析了机动车尾气颗粒物污染特征,深入探索了影响尾气颗粒物浓度的主要因素,提出了相应的对策建议.结果表明:①怠速工况下机动车尾气中PM_(2.5)和PM_(10)质量浓度、PM_(0.01~1)数浓度较低,平均分别为0.035~1.434和0.049~3.669 mg·m~(-3)、(0.95~21.69)×10~4 cm~(-3);高怠速工况下颗粒物质量浓度和数浓度较高, PM_(2.5)质量浓度为0.350~5.132 mg·m~(-3),最大值来自大型柴油货车8.394 mg·m~(-3); PM_(10)质量浓度高达1.708~7.862 mg·m~(-3),最大值来自大型柴油客车8.672 mg·m~(-3); PM_(0.01~1)数浓度为(6.78~40.68)×10~4 cm~(-3).②随着发动机转速和车型增大、排放标准降低,机动车尾气中颗粒物质量浓度和数浓度明显升高.与怠速工况相比,高怠速工况下的PM_(2.5)质量浓度升高3~44倍, PM_(0.01~1)数浓度升高2~33倍.与小型车相比,中、大型车的PM_(2.5)质量浓度升高约5倍, PM_(0.01~1)数浓度升高约2倍.使用92号汽油排放的颗粒物质量浓度与数浓度约为95号汽油车的2倍,柴油车排放的颗粒物浓度高于汽油车.国III标准的汽油车尾气颗粒物的质量浓度与数浓度约是国IV和国V标准的2~4倍.③提高机动车排放标准和燃油品质,减少在实际道路行驶中突然加速或启动等高怠速工况的瞬态变化,加强对中、大型车尤其是大型柴油车的监管,能够一定程度上减轻机动车尾气颗粒物污染.
        Mass concentration and number concentration of exhaust particles from 10 different vehicles on the roads in urban Jinan were measured in situ by using portable instruments coupled with self-designed exhaust sampling device with double idle speed exhaust detection method as a reference. Based on the experimental data, the pollution characteristics, main factors influencing the emission of vehicle exhaust particles were analyzed deeply followed by corresponding suggestions. The results show that: ① Under idling mode, the PM_(2.5) and PM_(10) mass concentrations and PM_(0.01~1) number concentration of vehicle exhaust were relatively low, with the average concentration of 0.035~1.434 and 0.049~3.669 mg·m~(-3),(0.95~21.69)×10~4 cm~(-3), respectively. By contrast, the mass and number concentrations under high idling mode were very high. The average PM_(2.5) mass concentration was 0.350~5.132 mg·m~(-3), with the maximum value of 8.394 mg·m~(-3) from large diesel van. The average PM_(10) mass concentration was 1.708~7.862 mg·m~(-3), with the maximum value of 8.672 mg·m~(-3) from large diesel passenger bus. The average PM_(0.01~1) number concentration was(6.78~40.68)×10~4 cm~(-3). ② With the rising engine speed, increasing vehicle size and constricting emission standard, the mass and number concentrations of exhaust particles increased significantly. When compared with idling mode, PM_(2.5) mass concentration in high idling mode increased by a factor of 3~44 and PM_(0.01~1) number concentration increases by a factor of 2~33. Compared with small vehicles, the PM_(2.5) and PM_(0.01~1) concentrations of medium and large vehicles increased by a factor of about 5 and 2, respectively. The mass and number concentrations of particles emitted from vehicles with 92~# gasoline were about twice those with 95~# gasoline, and the particle concentrations from diesel vehicles were higher than those from gasoline vehicles. The mass and number concentration of exhaust particles from vehicles of National III Standard increased by a factor of 2~4 when compared with the vehicles of National IV and V Standards. ③The corresponding suggestions to the influencing factors can to a certain degree mitigate the particle pollution from vehicle exhausts, including constricting the vehicle emission standards, improving fuel quality, reducing the transient changes at high idling mode in the condition of sudden acceleration or starting, and strengthening the regulation of medium and large vehicles, especially the large diesel vehicles.
引文
陈莉荣, 郑辉辉, 师华定, 等. 2018. 未来黑碳气溶胶排放对区域气候变化的影响模拟[J]. 环境工程技术学报, 8(1): 1-11
    陈长虹, 景启国, 王海鲲, 等. 2005. 重型机动车实际排放特性与影响因素的实测研究[J]. 环境科学学报, 25(7): 870-878
    樊瑞军, 任春玲. 2009. 双怠速法在用车尾气排放检测台架系统的研究[J]. 中国新技术新产品, (11): 132
    樊筱筱, 蒋靖坤, 张强, 等. 2016. 轻型汽油车排放颗粒物数浓度和粒径分布特征[J]. 环境科学, 37(10): 3743-3749
    国家统计局山东调查总队.2017.山东统计年鉴2017[J].北京:中国统计出版社
    高继东, 宋崇林, 张铁臣, 等. 2007. 汽油车排气中颗粒物粒径的分布特性[J]. 燃烧科学与技术, 13(3): 248-252
    高俊华, 李洧, 高继东, 等. 2010. 汽油车颗粒物排放特性[J]. 吉林大学学报 (工学版), 40(4): 947-952
    Gao J, Peng X, Chen G, et al. 2016. Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution[J]. Science of the Total Environment, 542: 162-171
    Guo H, Cheng T, Gu X, et al. 2017. Assessment of PM2.5 concentrations and exposure throughout China using ground observations[J]. Science of the Total Environment, 601-602: 1024-1030
    何立强, 胡京南, 祖雷, 等. 2015. 国Ⅰ~国Ⅲ重型柴油车尾气PM2.5及其碳质组分的排放特征[J]. 环境科学学报, 35 (3): 656-662
    贺泓, 翁端, 资新运. 2007. 柴油车尾气排放污染控制技术综述[J]. 环境科学, 28(6): 1169-1177
    江宇红, 陈桂珠. 2003. 双怠速法测定LPG汽车尾气中污染物的排放水平[J]. 环境监测管理与技术,15(4): 17-18
    孔少飞, 白志鹏. 2013. 大气颗粒物来源解析中机动车尾气成分谱研究进展[J]. 环境科学与技术, 36(10): 26-33
    Liu B, Yang J, Yuan J, et al. 2017. Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China[J]. Atmospheric Research, 185: 22-31
    李佳琦. 2014. 典型交通环境细颗粒物和亚微米颗粒物化学特征研究[D]. 北京:清华大学. 76
    刘杰. 2013. 机动车尾气检测方法的优劣比较分析[J]. 科技与企业, (11): 309
    刘明月, 吴琳, 张静, 等. 2017. 天津市机动车尾气排放因子研究[J]. 环境科学学报,38(4):1377-1383
    刘双喜, 高俊华, 张雅洁, 等. 2009a. 轻型汽油车排气颗粒粒子排放特性试验研究[J]. 小型内燃机与摩托车, 38(6): 22-25
    Pope C A. 2003. Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease[J]. Circulation, 109 (1): 71-77
    申现宝. 2015. 柴油车排放烟羽中细颗粒物变化特征研究[D]. 北京:清华大学. 132
    Song Y, Shao M, Liu Y, et al. 2007. Source apportionment of ambient volatile organic compounds in Beijing[J]. Environmental Science & Technology, 41 (12): 4348-4353
    宋少洁, 吴烨, 蒋靖坤, 等. 2012. 北京市典型道路交通环境细颗粒物元素组成及分布特征[J]. 环境科学学报, 32(1): 66-73
    孙国兵, 李平伟, 潘宝财, 等. 2017. 95号汽油切换到92号汽油对发动机性能影响的差异[J]. 科学理论探索, 5(11): 62-91
    孙友敏, 李少洛, 陈春竹, 等. 2017. 济南市机动车排气污染特征及对市区PM2.5的影响研究[J]. 环境科学学报,38(4):1384-1391
    屠晓栋, 王嘉松, 张华, 等. 2007. 直喷式二冲程柴油机超细颗粒物排放特性的试验研究[J]. 内燃机工程, 28(5): 75-78
    Uhrner U, Zallinger M, von Löwis S, et al. 2011. Volatile nanoparticle formation and growth within a diluting diesel car exhaust[J]. Journal of the Air & Waste Management Association,61(4): 399-408
    Wang X, Chen J, Sun J, et al. 2014. Severe haze episodes and seriously polluted fog water in Jinan, China[J]. Science of the Total Environment, 493(493): 133-137
    Wang Y J, Zhang K M. 2012. Coupled turbulence and aerosol dynamics modeling of vehicle exhaust plumes using the CTAG model[J]. Atmospheric Environment, 59(9): 284-293
    Watson J G, Zhu T, Chow J C, et al. 2002. Receptor modeling application framework for particle source apportionment[J]. Chemosphere, 49 (9): 1093-1136
    万霞. 2015. 工况法下单缸不点火故障对汽车尾气排放影响的对比分析[J]. 深圳职业技术学院学报,14(3): 25-28
    吴银山, 林寅, 林枫. 2008. 柴油车与汽油车的排气污染和其它性能比较[J]. 环境, (S1): 42-44
    徐伟嘉, 李红霞, 黄建彰, 等. 2014. 佛山市机动车尾气颗粒物PM2.5的排放特征研究[J]. 环境科学与技术, 37 (3): 152-158
    Yang L, Zhou X,Wang Z, et al. 2012. Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment[J]. Atmospheric Environment, 55(3): 506-514
    Zielinska B, Sagebiel J, Arnott W P, et al. 2004. Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions[J]. Environmental Science & Technology, 38 (9): 2557-2567
    中华人民共和国环境保护部. 2014. 2013年中国机动车污染防治年报[J]. 北京:中华人民共和国环境保护部
    朱振明, 杨晓, 杨春卿. 2008. 济南市机动车保有现状及其污染排放控制措施[J]. 中国环境管理干部学院学报, 18(4): 7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700