用户名: 密码: 验证码:
西藏曲水县色甫金铜矿成矿流体性质与来源
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Properties and Sources of Ore-Forming Fluids in Sefu Gold-Copper Deposit,Quxu County, Tibet, China
  • 作者:李应栩 ; 宋旭波 ; 李光明 ; 向安平 ; 兰熙阳 ; 张林奎 ; 次仁桑布 ; 曹华文
  • 英文作者:Li Yingxu;Song Xubo;Li Guangming;Xiang Anping;Lan Xiyang;Zhang Linkui;Ciren Sangbu;Cao Huawen;Chengdu Centre of China Geological Survey;College of Earth Science,Chengdu University of Technology;Tibet Wuxin Mining Co.,Ltd.;Sixth Geological Brigade of Tibet Autonomous Region Geological and Mineral Exploration and Development Bureau;
  • 关键词:冈底斯斑岩成矿带 ; 色甫金铜矿 ; 成矿流体 ; 成矿深度 ; 矿床
  • 英文关键词:Gangdese porphyry metallogenic belt;;Sefu gold-copper deposit;;ore-forming fluid;;mineralization depth;;deposits
  • 中文刊名:地球科学
  • 英文刊名:Earth Science
  • 机构:中国地质调查局成都地质调查中心;成都理工大学地球科学学院;西藏五鑫矿业有限公司;西藏自治区地质矿产勘查开发局第六地质大队;
  • 出版日期:2018-12-20 14:29
  • 出版单位:地球科学
  • 年:2019
  • 期:06
  • 基金:国家重点研发计划项目(No.2016YFC0600308);; 中国地质调查局地质调查项目(No.DD20190147);; 国家自然科学基金资助项目(No.41702086);; 国家重点基础研究发展计划(No.2011CB403105)
  • 语种:中文;
  • 页:251-272
  • 页数:22
  • CN:42-1874/P
  • ISSN:1000-2383
  • 分类号:P618.51;P618.41
摘要
色甫金铜矿是新近在冈底斯南缘新生代斑岩成矿带内揭示的一个叠加于热液脉型铜矿上的浅成低温热液型金矿.详细的野外地质调查显示,色甫金铜矿和邻近的鸡公西矿区范围内先后经历了早始新世磁铁矿化、晚始新世-早渐新世与韧性剪切活动有关、早中新世钼矿化和铜矿化以及稍晚的金矿化等多期热液活动.对各期流体活动形成的石英中流体包裹体的岩相学、显微测温、显微激光拉曼和氢-氧同位素分析显示,与磁铁矿化有关的流体为岩浆热液混合建造水的高温、高盐度富水流体;与钼矿化有关的流体为岩浆热液与大气降水混合的高温、高盐度富水流体;与铜矿体形成有关的流体为具有岩浆贡献的中高温含CO_2低盐度流体与大气降水来源的低温低盐度富水流体混合的产物;与金矿体形成有关的流体为具有岩浆贡献的中温含CO_2±CH_4±N_2的中低盐度流体与大气降水来源的低温低盐度富水流体混合的产物.利用流体包裹体显微测温对其捕获温压估算的结果显示,铜矿体和钼矿化体形成前,该地区有过1.5~4.1 km的剥蚀,之后至金矿体形成前时有过近6 km的剥蚀,金矿体形成后剥蚀为0.8~1.2 km.矿区后续工作应优先针对近南北向断裂中赋存的蚀变岩型金矿开展工作.
        Sefu deposit is a newly discovered Au-Cu deposit in Gangdese porphyry Cu belt. Its Au orebodies are epithermal type and superimposed on the vein type Cu orebodies. According to detailed geological survey, five periods of hydrothermal activity are distinguished in and around Sefu and Jigongxi. They are Early Eocene magnetite mineralization, Late Eocene-Early Oligocene ductile shearing related one, Early Miocene molybdenum and copper mineralization, and gold mineralization at last. Petrography,microthermometry, laser Raman spectroscopy together with hydrogen and oxygen isotope analysis are conducted on the fluid inclusions in quartz formed during these five periods. It is found that fluid related to magnetite mineralization is the mixture of magma originated aqueous fluid of high temperature, high pressure, high salinity, and formation water. Fluid related to molybdenum mineralization is the mixture of meteoric water and magma originated aqueous fluid of high temperature, high pressure, and high salinity. Fluid related to copper mineralization is the mixture of medium-high temperature, low salinity fluid and containing medium density CO_2, which was originated from magma, and low temperature, low salinity fluid which is from meteoric water. Fluid related to gold mineralization is the mixture of medium temperature, low salinity fluid with low density CO_2,CH_4 and N_2, which was originated from magma, and medium temperature, low salinity fluid, which is from meteoric water.Estimation results of trapping temperature and pressure based on microthermometry also show 1.5-4.1 km erosion had happened before molybdenum and copper mineralization, and 6 km erosion had happened before gold mineralization. After gold mineralization, 0.8-1.2 km erosion had happened. Exploration should focus more on gold orebodies in the near north-south striking faults in Sefu area in future.
引文
Becker,S.P.,Fall,A.,Bodnar,R.J.,2008.Synthetic Fluid Inclusions.XVII.PVTX Properties of High Salinity H2O-NaCl Solutions(>30%NaCl):Application to Fluid Inclusions that Homogenize by Halite Disappearance from Porphyry Copper and Other Hydrothermal Ore Deposits.Economic Geology,103(3):539-554.https://doi.org/10.2113/gsecongeo.103.3.539
    Bodnar,R.J,Vityk,M.O.,1994.Interpretation of Micro-Thermomertric Data for H2O-NaCI Fluid Inclusions.In:de Vivo,B.,Frezzotti,M.I.,eds.,Fluid Inclusions in Minerals:Methods and Application.Verginia Tech,Blacksberg,117-130.
    Bottinga,Y.,Javoy,M.,1973.Comments on Oxygen Isotope Geothermometry.Earth and Planetary Science Letters,20(2):250-265.
    Brown,P.E.,Lamb,W.M.,1989.P-V-T Properties of Fluids in the System H2O±CO2±NaCl:New Graphical Presentations and Implications for Fluid Inclusion Studies.Geochimica et Cosmochimica Acta,53(6):1209-1221.https://doi.org/10.1016/0016-7037(89)90057-4
    Chen,J.,Wang,H.N.,2004.Geochemistry.Science Press,Beijing(in Chinese).
    Chi,G.X.,Lu,H.Z.,2008.Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage(FIA)Concept.Acta Petrologica Sinica,24(9):1945-1953(in Chinese with English abstract).
    Clayton,R.N.,O'Neil,J.R.,Mayeda,T.K.,1972.Oxygen Isotope Exchange between Quartz and Water.Journal of Geophysical Research,77(17):3057-3067.https://doi.org/10.1029/jb077i017p03057
    Copeland,P.,Harrison,T.M.,Kidd,W.S.F.,et al.,1987.Rapid Early Miocene Acceleration of Uplift in the Gangdese Belt,Xizang(Southern Tibet),and Its Bearing on Accommodation Mechanisms of the India-Asia Collision.Earth and Planetary Science Letters,86(2-4):240-252.https://doi.org/10.1016/0012-821x(87)90224-x
    Diamond,L.W.,2001.Review of the Systematics of CO2-H2OFluid Inclusions.Lithos,55(1-4):69-99.https://doi.org/10.1016/s0024-4937(00)00039-6
    Frost,B.R.,Frost,C.D.,2014.Essentials of Igneous and Metamorphic Petrology.Cambridge University Press,New York.
    Hedenquist,J.W.,Lowenstern,J.B.,1994.The Role of Magmas in the Formation of Hydrothermal Ore Deposits.Nature,370:519-527.https://doi.org/10.1038/370519a0
    Hou,Z.Q.,Zheng,Y.C.,Yang,Z.M.,et al.,2012.Metallogenesis of Continental Collision Setting:PartⅠ.Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits,31(4):647-670(in Chinese with English abstract).
    Hu,J.R.,1995.Deformation Features of Ductile Shear Belt in Qushui County.Tibetan Geology,(1):99-109(in Chinese with English abstract).
    Li,G.M.,Zeng,Q.G.,Yong,Y.Y.,et al.,2005.Discovery of Epithermal Au-Sb Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance:Case Study of Longruri Au-Sb Deposit.Mineral Deposits,24(6):595-602(in Chinese with English abstract).
    Liu,H.,Zhang,L.K.,Huang,H.X.,2019.Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper Deposit from the Southern Lhasa Microterrane Terrane,Tibet:Evidence from Fluid Inclusions,H-O-C Isotopic Composition.Earth Science,44(6):1935-1956(in Chinese with English abstract).
    Liu,Y.F.,Hou,Z.Q.,Yang,Z.M.,et al.,2011.Study on Fluid Inclusion of Nongruri Gold Deposit,Tibet,China.Acta Petrologica Sinica,27(7):2150-2158(in Chinese with English abstract).
    Lu,H.Z.,2008.Role of CO2Fluid in the Formation of Gold Deposits:Fluid Inclusion Evidences.Geochimica,37(4):321-328(in Chinese with English abstract).
    Lu,H.Z.,Chi,G.X.,Zhu,X.Q.,et al.,2018.Geological Characteristics and Ore Forming Fluids of Orogenic Gold Deposits.Geotectonica et Metallogenia,42(2):244-265(in Chinese with English abstract).
    Meng,Y.K.,Xu,Z.Q.,Ma,S.W.,et al.,2016.Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt,South Tibet.Earth Science,41(7):1081-1098(in Chinese with English abstract).
    Pan,G.T.,Mo,X.X.,Hou,Z.Q.,etal.,2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica,22(3):521-533(in Chinese with English Abstract).
    Phillips,G.N.,Evans,K.A.,2004.Role of CO2in the Formation of Gold Deposits.Nature,429(6994):860-863.https://doi.org/10.1038/nature02644
    Rodder,E.,1984.Fluid Inclusions.Reviews in Mineralogy.Mineralogical Society of America,12:1-644.
    Rusk,B.G.,Reed,M.H.,Dilles,J.H.,2008.Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte,Montana.Economic Geology,103(2):307-334.https://doi.org/10.2113/gsecongeo.103.2.307
    Shepherd,T.J.,Rankin,A.H.,Alderton,D.H.M.,1985.APractical Guide to Fluid Inclusion Studies.Chapman&Hall,Blackie.
    Taylor,H.P.,1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology,69(6):843-883.https://doi.org/10.2113/gsecongeo.69.6.843
    Wang,J.,Sun,F.Y.,Yu,L.,et al.,2017.Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu,Qinghai Province,China.Earth Science,42(6):941-956(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.074
    Wang,Y.Y.,Tang,J.X.,Song,Y.,et al.,2018.Characteristics of the Main Ore Minerals in Tiegelongnan PorphyryHigh Sulfidation Deposit,Tibet,China.Acta Mineralogica Sinica,38(1):109-122(in Chinese with English abstract).
    Xing,J.B.,Ge,L.S.,Zou,Y.L.,et al.,2003.Geological Geochemical Character of Dongga Gold Deposit in Xietongmen County,Tibet.Gold Geology,9(2):28-32(in Chinese with English abstract).
    Xu,J.H.,Xiao,X.,Chi,H.G.,et al.,2011.Fluid Inclusion Study on Gold-Copper Mineralization in Lower Devonian Strata of the Kelan Basin,Altay,China.Acta Petrologica Sinica,27(5):1299-1310(in Chinese with English abstract).
    Yang,Z.M.,Hou,Z.Q.,Li,Z.Q.,et al.,2008a.Direct Record of Primary Fluid Exsolved from Magma:Evidence from Unidirectional Solidification texture(UST)in Quartz Found in Qulong Porphyry Copper Deposit,Tibet.Mineral Deposits,27(2):188-199(in Chinese with English abstract).
    Yang,Z.M.,Hou,Z.Q.,Song,Y.C.,et al.,2008b.Qulong Superlarge Porphyry Cu Deposit in Tibet:Geology,Alteration and Mineralization.Mineral Deposits,27(3):279-318(in Chinese with English abstract).
    Zhang,S.K.,Zheng,Y.Y.,Zhang,G.Y.,et al.,2013.Geochronological Constraints on Jigongcun Quartz-Vein Type Molybdenum Deposit in Quxu County,Tibet.Mineral Deposits,32(3):641-648(in Chinese with English abstract).
    Zheng,S.H.,Hou,F.G.,Ni,B.L.,1983.Hydrogen and Oxygen Isotopic Studies of Meteoric Water in China.Chinese Science Bulletin,28(13):801-806(in Chinese).
    Zheng,S.H.,Zhang,Z.F.,Ni,B.L.,et al.,1982.Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang.Acta Scicentiarum Naturalum Universitatis Pekinensis,18(1):99-106(in Chinese with English abstract).
    Zheng,Y.F.,Chen,J.F.,2000.Stable Isotope Geochemistry.Science Press,Beijing(in Chinese).
    Zhong,W.T.,Li,Y.X.,Li,G.M.,et al.,2015.Fluid Inclusion of the Seripu Gold Deposit in Dabu of Gangdise,Tibet.Acta Geologica Sinica,89(3):599-607(in Chinese with English abstract).
    Zhu,X.Q.,Guo,X.W.,Zhang,X.H.,et al.,2018.Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau.Earth Science,43(6):1903-1920(in Chinese with English abstract).
    陈骏,王鹤年,2004.地球化学.北京:科学出版社.
    胡敬仁,1995.西藏曲水县色甫-科木韧性剪切带变形变质特征.西藏地质,(1):99-109.
    侯增谦,郑远川,杨志明,等,2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质,31(4):647-670.
    李光明,曾庆贵,雍永源,等,2005.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义--以西藏弄如日金锑矿床为例.矿床地质,24(6):595-602.
    刘洪,张林奎,黄瀚霄,等,2019.西藏南拉萨微地体鲁尔玛斑岩型铜矿成矿流体性质及演化--来自流体包裹体和H-O-C同位素组成的证据.地球科学,44(6):1935-1956.
    刘云飞,侯增谦,杨志明,等,2011.西藏弄如日金矿流体包裹体研究.岩石学报,27(7):2150-2158.
    卢焕章,2008.CO2流体与金矿化:流体包裹体的证据.地球化学,37(4):321-328.
    卢焕章,池国祥,朱笑青,等,2018.造山型金矿的地质特征和成矿流体.大地构造与成矿学,42(2):244-265.
    孟元库,许志琴,马士委,等,2016.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学,41(7):1081-1098.
    潘桂棠,莫宣学,侯增谦,等,2006.冈底斯造山带的时空结构及演化.岩石学报,22(3):521-533.
    王键,孙丰月,禹禄,等,2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学,42(6):941-956.https://doi.org/10.3799/dqkx.2017.074
    王艺云,唐菊兴,宋扬,等,2018.西藏铁格隆南斑岩-高硫型浅成低温热液矿床主要矿石矿物特征.矿物学报,38(1):109-122.
    邢俊兵,葛良胜,邹依林,等,2003.西藏谢通门县洞嘎金矿床地质地球化学特征.黄金地质,9(2):28-32.
    徐九华,肖星,迟好刚,等,2011.阿尔泰南缘克兰盆地的脉状金-铜矿化及其流体演化.岩石学报,27(5):1299-1310.
    杨志明,侯增谦,李振清,等,2008a.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录.矿床地质,27(2):188-199.
    杨志明,侯增谦,宋玉财,等,2008b.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质,27(3):279-318.
    张苏坤,郑有业,张刚阳,等,2013.西藏曲水县鸡公村石英脉型钼矿床成矿时代约束.矿床地质,32(3):641-648.
    郑淑蕙,侯发高,倪葆龄,1983.我国大气降水的氢氧稳定同位素研究.科学通报,28(13):801-806.
    郑淑蕙,张知非,倪葆龄,等,1982.西藏地热水的氢氧稳定同位素研究.北京大学学报,18(1):99-106.
    郑永飞,陈江峰,2000.稳定同位素地球化学.北京:科学出版社.
    钟婉婷,李应栩,李光明,等,2015.西藏冈底斯成矿带达布矿区色日普金矿流体包裹体研究.地质学报,89(3):599-607.
    朱晓青,郭兴伟,张训华,等.2018.青藏高原中-南部新生代构造演化的热年代学制约.地球科学,43(6):1903-1920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700