用户名: 密码: 验证码:
Acoustic backscattering measurement from sandy seafloor at 6–24 kHz in the South Yellow Sea
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Acoustic backscattering measurement from sandy seafloor at 6–24 kHz in the South Yellow Sea
  • 作者:Guangming ; Kan ; Baohua ; Liu ; Zhiguo ; Yang ; Shengqi ; Yu ; Lehua ; Qi ; Kaiben ; Yu ; Yanliang ; Pei
  • 英文作者:Guangming Kan;Baohua Liu;Zhiguo Yang;Shengqi Yu;Lehua Qi;Kaiben Yu;Yanliang Pei;Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources;Laboratory for Marine Geology and Environment, Pilot National Laboratory for Marine Science and Technology(Qingdao);National Deep Sea Center, Ministry of Natural Resources;College of Marine Geosciences, Ocean University of China;
  • 英文关键词:acoustic backscattering strength;;sandy bottom;;South Yellow Sea;;gazing angle dependence;;frequency dependence
  • 中文刊名:Acta Oceanologica Sinica
  • 英文刊名:海洋学报(英文版)
  • 机构:Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources;Laboratory for Marine Geology and Environment, Pilot National Laboratory for Marine Science and Technology(Qingdao);National Deep Sea Center, Ministry of Natural Resources;College of Marine Geosciences, Ocean University of China;
  • 出版日期:2019-05-09
  • 出版单位:Acta Oceanologica Sinica
  • 年:2019
  • 期:05
  • 基金:The Opening Fund of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.QNLM2016ORP0209;; the National Natural Science Foundation of China under contract Nos 41330965,41676055 and 41527809;; the Taishan Scholar Project Funding under contract No.tspd20161007
  • 语种:英文;
  • 页:103-112
  • 页数:10
  • CN:11-2056/P
  • ISSN:0253-505X
  • 分类号:P714.6
摘要
The acoustic bottom backscattering strength was measured at the frequency range of 6–24 kHz on a typical sandy bottom in the South Yellow Sea by using omnidirectional sources and omnidirectional receiving hydrophones. In the experiment, by avoiding disturbances due to scattering off the sea surface and satisfying the far-field condition, we obtained values of acoustic bottom backscattering strength ranging from –41.1 to –24.4 dB within a grazing angle range of 18°–80°. In the effective range of grazing angles, the acoustic scattering strength generally increases with an increase in the grazing angles, but trends of the variation were distinct in different ranges of frequency, which reflect different scattering mechanisms. The frequency dependence of bottom backscattering strength is generally characterized by a positive correlation in the entire frequency range of 6–24 kHz at the grazing angles of 20°, 40° and 60° with the linear regression slopes of 0.222 9 dB/kHz, 0.513 0 dB/kHz and 0.174 6 dB/kHz, respectively. At the largest grazing angle of 80°, the acoustic backscattering strength exhibits no evident frequency dependence.
        The acoustic bottom backscattering strength was measured at the frequency range of 6–24 kHz on a typical sandy bottom in the South Yellow Sea by using omnidirectional sources and omnidirectional receiving hydrophones. In the experiment, by avoiding disturbances due to scattering off the sea surface and satisfying the far-field condition, we obtained values of acoustic bottom backscattering strength ranging from –41.1 to –24.4 dB within a grazing angle range of 18°–80°. In the effective range of grazing angles, the acoustic scattering strength generally increases with an increase in the grazing angles, but trends of the variation were distinct in different ranges of frequency, which reflect different scattering mechanisms. The frequency dependence of bottom backscattering strength is generally characterized by a positive correlation in the entire frequency range of 6–24 kHz at the grazing angles of 20°, 40° and 60° with the linear regression slopes of 0.222 9 dB/kHz, 0.513 0 dB/kHz and 0.174 6 dB/kHz, respectively. At the largest grazing angle of 80°, the acoustic backscattering strength exhibits no evident frequency dependence.
引文
Dong Zhongchen,Li Yanan,Jin Yanfeng.2013.Shallow seafloor reverberation modeling and simulation of torpedo.Torpedo Technology(in Chinese),21(2):100-104
    Gao Bo.2013.Modeling and characteristic of long-range bottom reverberation in shallow water(in Chinese)[dissertation].Harbin:Harbin Engineering University
    Hines P C,Osler J C,MacDougald D J.2005.Acoustic backscatter measurements from littoral seabeds at shallow grazing angles at 4 and 8 kHz.The Journal of the Acoustical Society of America,117(6):3504-3516,doi:10.1121/1.1898064
    Hu Jianzhong.2009.Measurement and model calculation of sea bottom three-dimensional scattering strength(in Chinese)[dissertation].Harbin:Harbin Engineering University
    Jackson D R,Baird A M,Crisp J J,et al.1986.High-frequency bottom backscatter measurements in shallow water.The Journal of the Acoustical Society of America,80(4):1188-1199,doi:10.1121/1.393809
    Jackson D R,Briggs K B.1992.High-frequency bottom backscattering:roughness versus sediment volume scattering.The Journal of the Acoustical Society of America,92(2):962-977,doi:10.1121/1.403966
    Jackson D R,Richardson M D.2007.High-frequency seafloor acoustics.New York:Springer Science+Business Media,LLC
    Jin Guoliang,Wu Chengyi,Zhang Guohua,et al.1987.The measurement of two-dimensional bottom backscattering coefficients at shallow water.Acta Acustica(in Chinese),12(3):227-231
    La H,Choi J W.2010.8-kHz bottom backscattering measurements at low grazing angles in shallow water.The Journal of the Acoustical Society of America,127(4):EL160-EL165,doi:10.1121/1.3338987
    Li Songwen,Sun Liangyi.2008.Subcritical detection of buried minea review on the theories,experiments and equipment.Ship Electronic Engineering(in Chinese),28(2):136-140
    McKinney C M,Anderson C D.1964.Measurements of backscattering of sound from the ocean bottom.The Journal of the Acoustical Society of America,36(1):158-163,doi:10.1121/1.1918927
    Peng Zhaohui,Zhou Jixun,Zhang Renhe.2004.In-plane bistatic backward scattering from seabottom with randomly inhomogeneous sediment and rough interface.Science in China Series G:Physics,Mechanics and Astronomy,47(6):702-716,doi:10.1007/BF02687341
    Pouliquen E,Lyons A P.2002.Backscattering from bioturbated sediments at very high frequency.IEEE Journal of Oceanic Engineering,27(3):388-402,doi:10.1109/JOE.2002.1040926
    Soukup R J,Gragg R F.2003.Backscatter from a limestone seafloor at2-3.5 kHz:measurements and modeling.The Journal of the Acoustical Society of America,113(5):2501-2514,doi:10.1121/1.1558039
    Stanic S,Briggs K B,Fleischer P,et al.1988a.Shallow-water high-frequency bottom scattering off Panama City,Florida.The Journal of the Acoustical Society of America,83(6):2134-2144,doi:10.1121/1.396341
    Stanic S,Briggs K B,Fleischer P,et al.1989.High-frequency acoustic backscattering from a coarse shell ocean bottom.The Journal of the Acoustical Society of America,85(1):125-136,doi:10.1121/1.397720
    Stanic S,Eckstein B E,Williams R L,et al.1988b.A high-frequency,shallow-water acoustic measurement system.IEEE Journal of Oceanic Engineering,13(3):155-162,doi:10.1109/48.572
    Wen Mingming,Xiao Bo,Cui Huayi.2006.The method for measuring the acoustics characteristic of the ocean sediment.Ocean Technology(in Chinese),25(1):124-126
    Williams K L.2009.Forward scattering from a rippled sand/water interface:modeling,measurements,and determination of the plane wave,flat surface reflection coefficient.IEEE Journal of Oceanic Engineering,34(4):399-406,doi:10.1109/JOE.2008.2002121
    Williams K L,Jackson D R,Tang Dajun,et al.2009.Acoustic backscattering from a sand and a sand/mud environment:experiments and data/model comparisons.IEEE Journal of Oceanic Engineering,34(4):388-398,doi:10.1109/JOE.2009.2018335
    Williams K L,Jackson D R,Thorsos E I,et al.2002.Acoustic backscattering experiments in a well characterized sand sediment:data/model comparisons using sediment fluid and biot models.IEEE Journal of Oceanic Engineering,27(3):376-387,doi:10.1109/JOE.2002.1040925
    Yu Shengqi,Liu Baohua,Yu Kaiben,et al.2017.A backscattering model for a stratified seafloor.Acta Oceanologica Sinica,36(7):56-65,doi:10.1007/s13131-017-1084-1
    Zhang Renhe,Li Zhenglin,Peng Zhaohui,et al.2013.Overview of shallow water acoustics.Scientia Sinica Physica,Mechanica&Astronomica(in Chinese),43(S1):S2-S15
    Zou Dapeng,Kan Guangming,Long Jianjun.2014.Methods of in-situ acoustic measurement of seafloor surface sediment.Haiyang Xuebao(in Chinese),36(11):111-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700