用户名: 密码: 验证码:
门源Mw5.9级地震形变InSAR观测及区域断裂带深部几何形态
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:InSAR Observation of Menyuan Mw5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone
  • 作者:刘洋 ; 许才军 ; 温扬茂
  • 英文作者:LIU Yang;XU Caijun;WEN Yangmao;School of Geodesy and Geomatics, Wuhan University;Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University;Collaborative Innovation Center of Geospatial Technology;
  • 关键词:门源Mw5.9级地震 ; InSAR ; 滑动分布 ; 深部几何形态 ; 花状构造
  • 英文关键词:Menyuan Mw5.9 earthquake;;InSAR;;slip distribution;;deep geometry;;flower structure
  • 中文刊名:武汉大学学报(信息科学版)
  • 英文刊名:Geomatics and Information Science of Wuhan University
  • 机构:武汉大学测绘学院;武汉大学地球空间环境与大地测量教育部重点实验室;地球空间信息技术协同创新中心;
  • 出版日期:2019-05-14 10:55
  • 出版单位:武汉大学学报(信息科学版)
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金(41874011,41774011,41431069);; 国家重点研发计划(2018YFC1503603)~~
  • 语种:中文;
  • 页:90-97
  • 页数:8
  • CN:42-1676/TN
  • ISSN:1671-8860
  • 分类号:P315.2
摘要
利用Sentinel-1A卫星升轨、降轨合成孔径雷达影像数据,提取了2016年门源Mw5.9级地震的高精度合成孔径雷达干涉同震形变场,利用单纯形法和非负最小二乘法反演确定了地震断层几何和滑动分布,并构建了区域断裂带的深部几何形态模型。结果表明,门源Mw5.9级地震同震形变以地表抬升为主,沿升轨、降轨视线向的最大值分别为5.3 cm、7.1 cm;地震断层走向、倾角分别为133°、43°;地震滑动以逆冲为主,主要发生在地下6.14~12.28 km处,最大滑动量约0.5 m,平均滑动角为66.85°,地震矩为1.0×10~(18) N·m(Mw5.94);形变观测拟合残差均方根为0.36 cm;区域断裂带的深部几何形态以花状构造为特征,整体倾向南西,门源地震发震断裂为花状构造中未出露地表的盲断层。相关成果能够为研究区域地壳运动与变形、活动断裂与地震孕育发生等提供参考。
        By using Sentinel-1 A ascending and descending synthetic aperture radar(SAR) data, this paper extracts the high-precision interferometric SAR(InSAR) coseismic deformation of the 2016 Menyuan Mw5.9 earthquake, inverts the fault geometry and slip distribution using simplex method and nonnegative least squares method, and constructs the deep geometry model of regional fault zone. The results show that coseismic deformation of the Menyuan Mw5.9 earthquake is dominated by surface uplift, and the maximums along the line-of-sight direction of ascending and descending tracks are 5.3 cm and 7.1 cm respectively. The fault strike and dip angles are 133° and 43° respectively. The seismic slip is dominated by thrust component, mainly occurring in 6.14-12.28 km underground. The maximum slip is about 0.5 m, the average slip angle is 66.85°, and the earthquake moment is 1.0×10~(18) N·m(Mw5.94). The fitting residual root mean square of deformation observations is 0.36 cm. The deep geometry of the regional fault zone is characterized by flower structure, which inclines to the south-west as a whole. The Menyuan earthquake rupture is a blind fault which does not appear on the surface in the flower structure. Relevant results can provide the reference for studying regional crustal movement and deformation, active fault and earthquake preparation and occurrence.
引文
[1] He Wengui,Liu Baichi,Yuan Daoyang,et al.Research on Slip Rates of the Lenglongling Active Fault Zone[J].Northewestern Seismological Journal,2000,22(1):90-97(何文贵,刘百篪,袁道阳,等.冷龙岭活动断裂的滑动速率研究[J].西北地震学报,2000,22(1):90-97)
    [2] Deng Qidong,Zhang Peizhen,Ran Yongkang,et al.Basic Characteristics of Active Tectonics of China[J].Science in China(Series D),2002,32(12):1 020-1 031(邓起东,张培震,冉勇康,等.中国活动构造基本特征[J].中国科学(D辑),2002,32(12):1 020-1 031)
    [3] Hu Chaozhong,Yang Panxin,Li Zhimin,et al.Seismogenic Mechanism of the 21 January 2016 Menyuan,Qinghai Ms6.4 Earthquake[J].Chinese Journal of Geophysics,2016,59(5):1 637-1 646(胡朝忠,杨攀新,李智敏,等.2016年1月21日青海门源6.4级地震的发震机制探讨[J].地球物理学报,2016,59(5):1 637-1 646)
    [4] Guo Peng,Han Zhujun,An Yanfen,et al.Activity of the Lenglongling Fault System and Seismotecto-nics of the 2016 Ms6.4 Menyuan Earthquake[J].Science China Earth Sciences,2017,47(5):617-630(郭鹏,韩竹军,安艳芬,等.冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J].中国科学:地球科学,2017,47(5):617-630)
    [5] Jiang Wenliang,Li Yongsheng,Tian Yunfeng,et al.Research of Seismogenic Structure of the Men-yuan Ms6.4 Earthquake on January 21,2016 in Lenglongling Area of the NE Tibetan Plateau[J].Seismology and Geology,2017,39(3):536-549(姜文亮,李永生,田云锋,等.冷龙岭地区2016年青海门源6.4级地震发震构造特征[J].地震地质,2017,39(3):536-549)
    [6] Li Y,Jiang W,Zhang J,et al.Space Geodetic Observations and Modeling of 2016 Mw5.9 Menyuan Earthquake:Implications on Seismogenic Tectonic Motion[J].Remote Sensing,2016,8(6):519
    [7] Zheng Bowen.Fault Slip Inversion of 2016 Men-yuan Earthquake from InSAR Deformation Fields by Multi-orbit Sentinel-1A Images[D].Beijing:Institude of Geology,China Earthquake Administration,2017(郑博文.2016年门源地震InSAR形变场及发震断层参数反演[D].北京:中国地震局地质研究所,2017)
    [8] Huang Hao,Fu Hong,Sha Chengning,et al.Relocation of the 2016 Ms6.4 Men-yuan,Qinghai Earthquake[J].Acta Seismologica Sinica,2017,39(2):176-187(黄浩,付虹,沙成宁,等.2016年青海门源Ms6.4地震重定位[J].地震学报,2017,39(2):176-187)
    [9] Zhang Ming,Gao Han,Niu Yufen,et al.Coseismic Deformation Focal Mechanisms Inversion for 2016 Menyuan Earthquake by DInSAR Observations[J].Progress in Geophysics,2017,32(3):1 089-1 094(张明,高涵,牛玉芬,等.2016年门源地震震源机制DInSAR同震形变反演[J].地球物理学进展,2017,32(3):1 089-1 094)
    [10] Lei Dongning,Liu Jie,Liu Shumei,et al.Discussion on the Seismogenic Structure of the 2016 Men-yuan M 6.4 Earthquake in Menyuan,Qinghai[J].Seismology and Geology,2018,40(1):107-120(雷东宁,刘杰,刘姝妹,等.2016年1月21日青海门源M 6.4地震发震构造模式[J].地震地质,2018,40(1):107-120)
    [11] Wang H,Liu-Zeng J,Ng A H M,et al.Sentinel-1 Observations of the 2016 Menyuan Earthquake:A Buried Reverse Event Linked to the Left-Lateral Haiyuan Fault[J].International Journal of Applied Earth Observation and Geoinformation,2017,61:14-21
    [12] Xiong W,Chen W,Zhao B,et al.Insight into the 2016 Menyuan Mw5.9 Earthquake with InSAR:A Blind Reverse Event Promoted by Historical Earthquakes[J].Pure and Applied Geophysics,2019,176:577-591
    [13] Wright T J,Lu Z,Wicks C.Source Model for the Mw6.7,23 October 2002,Nenana Mountain Earthquake (Alaska) from InSAR[J].Geophysical Research Letters,2003,30(18):1 974
    [14] Li Z,Elliott J R,Feng W,et al.The 2010 Mw6.8 Yushu (Qinghai,China) Earthquake:Constraints Provided by InSAR and Body Wave Seismology[J].Journal of Geophysical Research,2011,116(B10):B10302
    [15] Weston J,Ferreira A M,Funning G J.Systematic Comparisons of Earthquake Source Models Determined Using InSAR and Seismic Data[J].Tectonophysics,2012,532-535:61-81
    [16] Liu Yang,Xu Caijun,Wen Yangmao,et al.The InSAR Coseismic Deformation Observations and Fault Parameter Inversion of the 2008 Dachaidan Mw6.3 Earthquake[J].Acta Geodaetica et Cartographica Sinica,2015,44(11):1 202-1 209(刘洋,许才军,温扬茂,等.2008年大柴旦Mw6.3级地震的InSAR同震形变观测及断层参数反演[J].测绘学报,2015,44(11):1 202-1 209)
    [17] Xu Caijun,Deng Changyong,Zhou Lixuan.Coseismic Slip Distribution Inversion Method Based on the Variance Component Estimation[J].Geomatics and Information Science of Wuhan University,2016,41(1):37-44(许才军,邓长勇,周力璇.利用方差分量估计的地震同震滑动分布反演[J].武汉大学学报·信息科学版,2016,41(1):37-44)
    [18] Wen Yangmao,Feng Yiting.Three-Dimensional Deformation Field of Ali Earthquake from InSAR Observations and Earthquake Rupture Model[J].Geomatics and Information Science of Wuhan University,2018,43(9):1 369-1 375(温扬茂,冯怡婷.地震破裂模型约束的中国阿里地震三维形变场[J].武汉大学学报·信息科学版,2018,43(9):1 369-1 375)
    [19] Lawson C L,Hanson R J.Solving Least Squares Problems[J].International Journal of Computer Mathematics,1995,77:105-116
    [20] Su Xiaoning,Wang Zhen,Meng Guojie,et al.Pre-seismic Strain Accumulation and Co-seismic Deformation of the 2015 Nepal Ms8.1 Earthquake Observed by GPS[J].China Science Bulletin,2015,60(22):2 115-2 123(苏小宁,王振,孟国杰,等.GPS观测的2015年尼泊尔Ms8.1级地震震前应变积累及同震变形特征[J].科学通报,2015,60(22):2 115-2 123)
    [21] Werner C,Wegmüller U,Strozzi T,et al.Gamma SAR and Interferometric Processing Software[C].ERS-ENVISAT Symposium,Gothenburg,Sweden,2000
    [22] Farr T G,Rosen P A,Caro E,et al.The Shuttle Radar Topography Mission[J].Reviews of Geophysics,2007,45:RG2004
    [23] Goldstein R M,Werner C L.Radar Interferogram Filtering for Geophysical Applications[J].Geophysical Research Letters,1998,25(21):4 035-4 038
    [24] Goldstein R,Zebker H,Werner C.Satellite Radar Interferometry:Two-Dimensional Phase Unwrapping[J].Radio Science,1988,23(4):713-720
    [25] Jónsson S,Zebker H,Segall P,et al.Fault Slip Distribution of the 1999 Mw7.1 Hector Mine,California,Earthquake,Estimated from Satellite Radar and GPS Measurements[J].Bulletin of the Seismological Society of America,2002,92(4):1 377-1 389
    [26] Okada Y.Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J].Bulletin of the Seismological Society of America,1985,75(4):1 135-1 154
    [27] Xu C,Liu Y,Wen Y,et al.Coseismic Slip Distribution of the 2008 Mw7.9 Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data[J].Bulletin of the Seismological Society of America,2010,100(5B):2 736-2 749
    [28] Chen Wenbin.Principal Features of Tectonic Deformation and Their Generation Mechanism in the Hexi Corridor and Its Adjacent Regions Since Late Quaternary[D].Beijing:Institude of Geology,China Earthquake Administration,2003(陈文彬.河西走廊及邻近地区最新构造变形基本特征及构造成因分析[D].北京:中国地震局地质研究所,2003)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700