用户名: 密码: 验证码:
Addressing ore formation and exploration
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Addressing ore formation and exploration
  • 作者:Jean-Louis ; Vigneresse
  • 英文作者:Jean-Louis Vigneresse;GéoRessources,UMR 7339,Université de Lorraine;
  • 英文关键词:Porphyry ore deposits;;Metals concentration processes;;Exploration;;Alteration pattern
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:GéoRessources,UMR 7339,Université de Lorraine;
  • 出版日期:2019-07-11
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:04
  • 基金:financial support from CREGU,Nancy.A6 months stay at the AIST Tsukuba,Japan,with Sunsho Ishihara was the introduction to link granites and ores
  • 语种:英文;
  • 页:388-397
  • 页数:10
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P624
摘要
Common base and noble metals represent an important economic factor in the actual industrial development.For instance the world resources for copper are actually estimated for about the next 30 years only.The situation requires rethinking the way major ore deposits form,leading to new guides for exploration.The present paper briefly examines the processes leading to ore formation,in relation with granitic or granodioritic intrusions.It identifies the importance of metal enrichment during the magmatic stage.Within the magma chamber that forms porphyry intrusions,metals may incorporate to first formed crystals,becoming inert; concentrate into the residual melt of a mush; or segregate by diffusion into the exsolved magmatic volatile phase(MVP)into which they are transported and precipitated.A competition results between elements partitioning and diffusivity.Hence,a specific Peclet number for each metal(Cu,Au,Ag,Mo,W,Sn,and REE)controls the ratio between the diffusive and the advective flux.Metals diffusivity in the melt shows differential behavior relative to a threshold of about10 13 m2/s.Metals with slower diffusivity values(e.g.As)will not concentrate.Conversely,fast diffusive metals(Au,Ag,Cu)may rapidly incorporate the MVP,provided an adequate component(halogens or S)is attractive for metals.The chemistry of the MVP escaping the magma induces different alteration patterns.Their relative content in F,Cl or S,attested by the composition of biotites and apatites,links with the preferential content of metals in o re deposits,representing a valuable tool for exploration.Finally the model is replaced in a set of coupled mechanical-chemical instabilities,within a three phase material.
        Common base and noble metals represent an important economic factor in the actual industrial development.For instance the world resources for copper are actually estimated for about the next 30 years only.The situation requires rethinking the way major ore deposits form,leading to new guides for exploration.The present paper briefly examines the processes leading to ore formation,in relation with granitic or granodioritic intrusions.It identifies the importance of metal enrichment during the magmatic stage.Within the magma chamber that forms porphyry intrusions,metals may incorporate to first formed crystals,becoming inert; concentrate into the residual melt of a mush; or segregate by diffusion into the exsolved magmatic volatile phase(MVP)into which they are transported and precipitated.A competition results between elements partitioning and diffusivity.Hence,a specific Peclet number for each metal(Cu,Au,Ag,Mo,W,Sn,and REE)controls the ratio between the diffusive and the advective flux.Metals diffusivity in the melt shows differential behavior relative to a threshold of about10 13 m2/s.Metals with slower diffusivity values(e.g.As)will not concentrate.Conversely,fast diffusive metals(Au,Ag,Cu)may rapidly incorporate the MVP,provided an adequate component(halogens or S)is attractive for metals.The chemistry of the MVP escaping the magma induces different alteration patterns.Their relative content in F,Cl or S,attested by the composition of biotites and apatites,links with the preferential content of metals in o re deposits,representing a valuable tool for exploration.Finally the model is replaced in a set of coupled mechanical-chemical instabilities,within a three phase material.
引文
Abzalov,M.Z.,Both,R.A.,1997.The Pechenga Ni-Cu deposits,Russia:data on PGE and Au distribution and sulphur isotope compositions.Mineralogy and Petrology 61,119-143.
    Ague,J.J.,Brimhall,G.H.,1988.Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California:effects of assimilation,crustal thickness,and depth of crystallization.Geological Society of America Bulletin 100,912-927.
    Annen,C.,2009.From plutons to magma chambers:thermal constraints on the accumulation of eruptible silicic magma in the upper crust.Earth and Planetary Science Letters 284,409-416.
    Aranacibia,O.N.,Clark,A.H.,1966.Early magnetite-amphibole-plagioclase alteration-mineralization in the Island copper porphyry copper-gold-molybdenum deposit.British Columbia Economic Geology 91,402-438.
    Arndt,N.,Lesher,C.M.,Czamanske,G.K.,2005.Mantle-derived magmas and magmatic Ni-Cu-(PGE)deposits.Economic Geology 100th Anniversary Volume5-24.
    Audetat,A.,Pettke,T.,Heinrich,C.A.,Bodnar,R.J.,2008.The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions.Economic Geology 103,877-908.
    Bachmann,O.,Miller,C.F.,de Silva,S.L.,2007.The volcanic-plutonic connection as a stage for understanding crustal magmatism.Journal of Volcanology and Geothermal Research 16,1-23.
    Bath,A.,Walshe,J.L,Cloutier.J., Verrall,M.,Cleverley,J.S.,Pownceby,M.I.,Macrae,C.M.,Wilson,N.C,Tunjic,J.,Nortje,G.S.,Robinson,P.,2013.Biolite and apatite as tools for tracking pathways of oxidized fluids in the Archean East Repulse Gold Deposit,Australia.Economic Geology 108,667-690.
    Beane,R.E.,1974.Biotitc stability in porphyry copper environment.Economic Geology 69,241-256.
    Boomeri,M.,Nakashima,K.,Lentz,D.R.,2009.The Miduk porphyry Cu deposit,Kerman,Iran:a geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes.Journal of Geochemical Exploration 103,17-29.
    Boomeri,M.,Nakashima,K.,Lentz,D.R.,2010.The Sarcheshmeh porphyry copper deposit,Kerman,Iran:a mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes.Ore Geology Reviews 38,367-381.
    Breiter,K.,2002.From explosive breccia to unidirectional solidification textures:magmatic evolution of a phosphorus and fluorine-rich granite system(Podlesi,KrusneHory Mts.,Czech Republic).Bulletin of the Czech Geological Survey 77,67-92.
    Breiter,K.,Forster.H.J.,Seltmann,R.,1999.Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge-Slavkovsky les metallogenic province.Mineralium Deposita 34,505-521.
    Brimhall,G.H.,Crerar,D.A.,1987.Ore fluids:magmatic to supergene.In:Carmichael,I.S.E.,Eugster,H.P.(Eds.),Thermodynamic Modelling of Geological Materials:Minerals,Fluids,and Melts.Reviews in Mineralogy and Geochemistry,vol.18,pp.235-321.
    Burnham,C.W.,1997.Magmas and hydrothermal fluids.In:Barnes,H.L.(Ed.),Geochemistry of Hydrothermal Ore Deposits,vol.3.John Wiley and Sons,Inc.,New York,pp.63-123.
    Campos,E.A,Touret,J.L.R.,Nikogosian,I.,Delgado,J.,2002.Ove rheated,Cu-bearing magmas in the Zaldivar porphyry-Cu deposit,Northern Chile.Geodynamic Cons equences Tcctonophysics 345,229-251.
    Cannell,J.,Cooke.D.R.,Walshe,J.L,Stein,H.,2005.Geology,mineralization,alteration,and structural evolution of the El Teniente porphyry Cu-Mo deposit.Economic Geology 100,979-1003.
    Carroll,M.R.,Webster.J.D.,1994.Solubilities of sulfur,noble gases,nitrogen,chlorine.and fluorine in magmas.In:Carroll,M.R.,Holloway.J.R.(Eds.),Volatiles in Magmas,Reviews in Mineralogy,vol.30,pp.231-279.
    Carten,R.B.,Geraghty,E.P.,Walker,B.M.,Shannon,J.R.,1988.Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit,Colorado.Economic Geology 83,266-296.
    Cauzid,J.,Phillipot,P.,Martinez-Criado,G.,Menez,B.,Labo ure,S.,2007.Contrasting Cu-complexing behaviour in vapour and liquid fluid inclusions from the Yankee Lode tin deposit,Mole Granite.Australia.Chemical Geology 246,39-54.
    Champallier,R.,Bystricky,M.,Arbaret,L,2008.Experimental investigation of magma rheology at 300 MPa:from pure hydrous melt to 76 vol.%of crystals.Earth and Planetary Science Letters 267,571-583.
    Clemens,J.D.,1990.The granulite-granite connexion.In:Vielzeuf,D.,Vidal,P.(Ed s.),Granulites and Crustal Evolution.Kluwer Academic Publisher,Amsterdam,pp.25-36.
    Cline,J.S.,Hofstra,A.H.,Muntean,J.L.,Tos dal,R.M.,Hickey,K.,2005.Carlin-type gold deposits in Nevada:critical geological characteristics and viable models.Economic Geology 100th Anniversary Volume 451-484.
    Dilles,J.,Einaudi,M.,T.,1992.Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit,Nevada; a 6-km vertical reconstruction.Economic Geology 87,1963-2001.
    Dilles,J.H.,1987.Petrology of the Yerington batholiths,Nevada:evidence for evolution of porphyry copper ore fluids.Economic Geology 82,1750-1789.
    Eklund,O.,Shebanov,A.D.,1999.The origin of rapakivi texture by sub-isothermal decompression.Precambrian Research 95,129-146.
    Frdenebayar.J.,Ogata,T.,Imai,A.,Sereenen,J.,2014.Textural and chemical evolution of unidirectional solidification textures in highly differentiated granitic rocks at Kharaatyagaan,Central Mongolia.Resource Geology 64,283-300.
    F(o|¨)rster,H.J.,Tischendorf,G., 1992.Volatile signatures of the Hercynianpostkinematic granites of the Erzgebirge:implications to related tin-tungstenmolybdenum metallogenesis.Chemie der Erde 52,49-61.
    Gardien,V,Rabinowiaz,M.,Vigneresse,J.L,Dubois,M.,Boulvais,P.,Martini,R.,2016.Long-lived interaction between hydrothermal and magmatic fluids in the Soultzsous-Forets granitic system(Rhine Graben,France).Lithos 246-247,110-127.
    Goldfarb,R.J.,Taylor,R.D.,Collins,G.S.,Goryachev,N.A.,Orlandini,O.F.,2014.Phanerozoic continental growth and gold metallogeny of Asia.Gondwana Res earch 25,48-102.
    Groves,D.I.,Bierlein,F.P.,Meinert,L.D.,Hitzman,M.W.,2010.Iron-oxide coppergold(IOCG)deposits through Earth history:implications for origin,lithospheric setting,and distinction from other epigenetic iron oxide deposits.Economic Geology 105,641-654.
    Gunow,A.J.,Ludington,S.,Munoz,J.L,1980.Fluorine in micas from the Henderson molybdenite deposit.Colorado.Economic Geology 75.1127-1137.
    Gustafs on,L.B.,Hunt,J.P.,1975.The porphyry copper deposit at El Salvador,Chile.Economic Geology 70,857-912.
    Haapala,I.,1997.Magmatic and postmagmatic processes in tin-mineralized granites:topaz-bearing leucogranite in the EurajokiRapakivi granite stock,Finland.Journal of Petrology 38,1645-1659.
    Harris,A.C.,Golding,S.D.,White,N.C.,2005.Bajo de la Alumbrcra copper-gold deposit:stable isotope evidence for a porphyry-related hydrothermalsystem dominated by magmatic aqueous fluids.Economic Geology 100,863-886.
    Harris,A.C.,Kamenetsky,V.S.,White,N.C.,Van Achtenberg,E.,Ryan,C.G.,2007.Melt inclusions in veins:linking magmas and porphyry Cu deposits.Science 302,2109-2 111.
    Hofmann,A.W.,1988.Chemical differentiation of the Earth:the relationship between mantle,continental crust,and oceanic crust.Earth and Planetary Science Letters 9 0,297-314.
    Hronsky.J.M.A.,Groves.D.I.,Loucks,R.R.,Beg,G.C.,2012.A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods.Mincralium Dcposita 47,339-358.
    Huber,C.,Bachmann,O.,Vigineresse,J.L.,Dufek,J.,Parmigiani,A.,2012.A physical model for metal extraction and transport in shallow magmatic systems.Geochemistry Geophysics Geosystems 12.https://doi.org/10.102 9/2012GC004042.
    Idru s,A.,Kolb,J.,Meyer,F.M.,2007.Chemical composition of rock-forming minerals in copper-gold-bearing tonalite porphyries at the BatuHijau deposit,Sumbawa Island,Indonesia:implications for crystallization conditions and fluorine-chlorine fugacity.Resource Geology 57,102-113.
    Imai,A.,2004.Variation of Cl and SO_3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese Island Arcs:implications for porphyry Cu metallogenesis in the Western Pacific Island Arcs.Resource Geology 54,357-372.
    Ishihara,S.,1977.The magnetite-series and ilmenite-series granitic rocks.Mining Geology 27,293-305.
    Ishihara.S.,Sasaki,A.,1989.Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith-a reconnaissance study.Geology 17,788-791.
    Landtwing,M.R.,Dillenbeck,E.D.,Leake.M.H.,Heinrich,C.A.,2002.Evolution of the breccias-hosted porphyry Cu-Mo-Au deposit at Agua Rica,Argentina:progressive unroofing of a magmatic hydrothermal system.Fconomic Geology 97,1273-1292.
    Landtwing,M.R.,Furrer,C.,Redmond,P.B.,Pettke,T.,Guillong,M..Heinrich,C.A.,2010.The Bingham Canyon porphyry Cu-Mo-Au depositⅢ.Zoned copper-gold ore deposition by magmatic vapor expansion.Economic Geology 105,91-118.
    Leach,D.L.,Sangster,D.L,Kelley,K.D.,Ross,R.L.,Garven,G.,Allen,C.R.,2005.Sediment-hosted Pb-Zn Deposits:a global perspective.Economic Geology100th Anniversary Volume 5-24.
    Li,Y.,Audetat,A.,2012.Partitioning of V,Mn,Co,Ni,Cu,Zn,As,Mo,Ag,Sn,Sb,W,Au,Pb,and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions.Geochimica et Cosmochimica Acta 75.1673-1692.
    Mamtani,M.A.,2012.Fractal analysis of magnetite grains-Implica tions for interpreting deformation mechanisms.Journal of the Geological Society of India 80,308-313.
    Mcmcti,V.,Paterson,S.,Matzel,J.,Mundil,R.,Okaya,D.,2010.Using magmatic lobes as"snapshots"of magma chamber growth to help decipher the growth and evolution of large,composite batholiths:an example from the Tuolumne Intrusion, Sierra Nevada,CA.Geological Society of America Bulletin 122,1912-1931.
    Mochnacka,K.,Oberc-Dziedzic,T.,Mayer.W.,Pieczka,A.,2015.Ore mineralization related to geological evolution of the Karkonosze-Izera Massif(the Sudetes,Poland)—towards a model.Ore Geology Reviews 64,215-238.
    Mungall,J.E.,2002.Empirical models relating viscosity and tracer diffusion in magmatic silicate melts.Geochimica et Cosmochimica Acta 66.125-143.
    Munoz,J.L.,1984.F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits.In:Bailey,S.W.(Ed.),Micas.Reviews in Mineralogy,vol.13.pp.469-493.
    Munoz,J.L,Ludington,S.D.,1974.Fluoride-hydroxyl exchange in biotite.American Journal of Science 1,27-396.
    Padilla-Garza,R.A.,Titley,S.R.,Eastoe,C.J.,2004.Hypogene evolution of the Escondida porphyry copper deposit,Chile.In:Sillitoe,R.H.,Perello,J.,Vidal,C.E.(Eds.),Andean Metallogeny:New Discoveries,Concepts and Updates,vol.11.Society of Economic Geology,Special Publication,pp.141-159.
    Parat,F.,Holtz,F.,2004.Sufur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions.Contributions to Mineralogy and Petrology 147,201-212.
    Parsapoor,A.,Khalil.,M.,Tepley,F.,Maghami,M.,2015.Mineral chemistry and isotopic composition of magmatic,re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit,Kemian(Southeast of Iran).Ore Geology Reviews 66,200-218.
    Paterson,S.R.,Fowler Jr.,T.K.,Schmidt,K.L.,Yoshinobou,A.S.,Yuan,E. S.,Miller,R.B.,1998.Interpreting magmatic fabric patterns in plutons.Lithos 44,53-82.
    Pears on,R.G.,1963.Hard and soft acids and bas es.Journal of the American Chemical Society 85,3533-3539.
    Pearson,R.G.,1997.Chemical Hardness.John Wiley and Sons,New York,p.210.
    Piccoli,P.M.,Candela,P.A.,2002.Apatite in igneous systems.In:Kohn,M.J.,Rakovan,J.,Hughes,J.M.(Eds.),Phosphates-geochemical,Geobiological,and Materials Importance,vol.48.Reviews in Mineralogy and Geochemistry,pp.255-292.
    Pistone,M.,Caricchi,L,Ulmer,P.,Burlini,L.,Ardia,P.,Reusser,E., Marone,F.,Arbaret,L,2012.Deformation experiments of bubble-and crystal-bearing magmas:rheological and microstructural analysis.Journal of Geophysical Re search B117,B05208.https://doi.org/10.1029/2011JB008986.
    Rabinowicz,M.,Vigneresse,J.L.,2004.Melt segregation under compaction and shear channeling:application to granitic magma segregation in a continentalcrust.Journal of Geophysical Research B109,B04407.https://doi.org/10.1029/2002JB002372.
    Richards,J.P.,2011.Magmatic to hydrothermal metal fluxes in convergent and collided margins.Ore Geology Reviews 40,1-26.
    Ripley,E.M.,Li,C.,201 1.A review of conduit-related Ni-Cu-(PGE)sulfide mineralization at the Voisey's Bay deposit,labrador and the eagle deposit,northern Michigan.Reviews in Economic Geology 17,181-197.
    Romer,R.L,Kroner,U.,2018.Paleozoic gold in the appalachians and variscides.Ore Geology Reviews 92,475-505.
    Rudnick,R.L,Gao,S.,2003.Composition of the continental crust.In:Rudnick,R.L(Ed.),Treatis e on Geochemistry,vol.3.Elsevier,Amsterdam,pp.1-64.
    Rutter,E.H.,Neumann,D.H.K.,1995.Experimental deformation of partially molten Westerly granite under fluid-absent conditions with implications for the extraction of granitic magma.Journal of Geophysical Research B100,15697-15715.
    Schwartz,M.O.,Rajah,S.S.,Askury,A.K.,Putthapiban,P.,Djaswadi,S.,1995.The Southeast Asian tin belt.Earth Science Reviews 38,95-293.
    Secdorff,E.,Dilles,J.,Proffctt Jr.,J.M.,Einaudi,M.T.,Zurcher.L.,Stavast,W.J.A.,Johnson,D.A.,Barton,M.D.,2005.Porphyry deposits:characteristics and origin of hypogene features.Economic Geology 100th Anniversary Volume251-298.
    Sha,LK.,Chappell,B.W.,1999.Apatite chemical composition,determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry,as a probe into granite petrogenesis.Geochimica et Cosmochimica Acta 63,3861-3881.
    Shannon,J.R.,Walker,B.M.,Carten,R.B.,Geraghty.E.P,1982.Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine.Colorado.Geology 10,293-297.
    Sillitoe,R.H.,1972.A plate tectonic model for the origin of porphyry copper deposits.Economic Geology 67,184-197.
    Streck,M.J.,2008.Mineral textures and zoning as evidence for open system processes.Reviews in Mineralogy and Chemistry 69,595-622.
    Streck,M.J.,Dille s,J.H.,1998.Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholiths.Geology 26,523-526.
    Taran,Y.A.,Bernard,A.,Gavilanes,J.C.,Africano,F.,2000.Native gold in mineral precipitates from high-temperature volcanic gases of Colima volcano.Mexico.Applied Geochemistry 15,337-346.
    Thompson,J.F.H.,Sillitoc,R.H.,Baker,T.,Lang,J.R.,Mortenscn,J.K.,1999.Intrusionrelated gold deposits associated with tungsten-tin provinces.Mineralium Deposita 34,323-334.
    Tosdal,R.M,Richards,J.P.,2001.Magmatic and stru ctural con trols on the development of porphyry Cu±Mo±Au deposits.In:Richards,J.P.,Tosdal R.M.(Eds.),Structural Controls on Ore Genesis,vol. 14.Reviews in Economic Geology,pp.157-181.
    Treloar,P.J.,Colley,H.,1995.Variations in F and Cl contents in apatites from magnetite-apatite ores in northern Chile,and their ore-genetic implications.Mineralogical Magazine 60,285-301.
    Vigneresse,J.L.,1995.Control of granite emplacement by regional deformation.
    Tectonophysics 249,173-186.Vigneresse,J.L,2004.A new paradigm for granite generation.Transactions of the Royal Society of Edinburgh Earth Sciences 95,11-22.
    Vigneresse,J.L.,2005.The specific case of the Mid-Proterozoicrapakivigranites and associated suite within the context of the Columbia supercontinent.Precambrian Research 137,1-34.
    Vigneresse,J.L,2008.Granitic batholiths:from pervasive and continuous melting in the in the lower crust to discontinuous and spaced plutonism in the uppercrust Transactions of the Royal Society of Edinburgh Earth Sciences 97,311-324.
    Vigneresse,J.L.,2015.Textures and melt-crystal-gas interactions in granites.Geoscience Frontiers 6,635-663.
    Vigncrcsse,J.L.,Barbcy,P.,Cuncy,M.,1996.Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer.Journal of Petrology 37,1597-1600.
    Vigneresse,J.L.,Duley,S.,Chattaraj.P.J.,2012.Describing the chemical character of a magma.Chemical Geology 287,102-113.
    Vigneresse,J.L,Truche,L.,Chattaraj.P.K.,2014.Metal(copper)segregation in magmas.Lithos 208-209,462-470.
    Vigneresse,J.L.,Truche,L.,2018.Chemical descriptors for describing physicochemical properties with applications to geosciences.Journal of Molecular Modeling 24,231.https://doi.org/10.1007/s00894-018-37 70-0.
    Webber,K.L.Falster,A.U.,Simmons,W.B.,Foord,E.E.,1997.The role of diffusioncontrolled oscillatory nucleation in the formation of line rock in pegmatite-aplite dikes.Journal of Petrology 38,1777-1791.
    Webster,J.D.,Tappen,C.M.,Mandeville,C.W.,2009.Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid.Ⅱ:felsic silicate systems at200 MPa.Geochimica et Cosmochimica Acta 73,559-581.
    Williams,P.J.,Barton,M.D.,Johnson,D.A.,Fontbote,L.,De Haller,A.,Mark,G.,Oliver,N.H.S.,2005.Iron oxide copper gold deposits:geology,space-time distribution and possible modes of origin.Economic Geology 100th Annivers ary Volume 37 1-405.
    Williamson,B.J.,Herrington,R.J.,Morris,A.,2016.Porphyry copper enrichment linked to excess aluminium in plagioclase.Nature Geoscience 9,237-241.
    Zajacz,Z.,2015.The effect of melt composition on the partitioning of oxidized sulfur between silicate melts and magmatic volatiles.Geochimica et Cosmochimica Acta 158,223-244.
    Zajacz,Z.,Halter,W.E.,Pettke,T.,Guillong.M.,2008.Determination of fluid/melt partition coefficients by IA-ICPMS analysis of co-existing fluid and silicate melt inclusions:controls on eleme nt partitioning.Geochimica et Cosmochimica Acta72.2169-2197.
    Zak,J.,Paterson,S.R.,Memeti,V.,2007.Four magmatic fabrics in the Tuolumne batholith,central Sierra Nevada,California(USA):implications for interpreting fabric pattern s in plutons and evolution of magma chambers in the upper crust Bulletin of the Geological Society of America 119,184-201.
    Zakcri,L.,Malck-Ghas cmi,F.,Jahangiri,A.,Moazzen,M.,2011.Mctallogcnic implications of biotite chemical composition; sample from Cu-Mo-Au mineralized granitoids of the Shah Jahan Batholith,NW Iran.Central European Geology 54,271-294.
    Zelenski,M.,Bortnikova,S.,2005.Sublimate speciation at mutnovsky volcano,Kamchatka.European Journal of Mineralogy 17,107-118.
    Zhang,Y.,2010.Diffusion in minerals and melts:Theoretical background.Reviews in Mineralogy and Geochemistry 72,5-59.
    Zhang,Y.,Ni,H., Chen,Y.,2010.Diffusion data in silicate melts.Reviews in Mineralogy and Geochemistry 72,311-408.
    Zhou,M.F.,Robinson,P.T.,Lesher,C.M.,Keays,R.R.,Zhang,C.J.,Malpas,J.,2005.Geochemistry,petrogenesis and metallogenesis of the panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits,sichuan province,SW China,Journal of Petrology 46,2253-2280.
    Zhu,C.,Sverjensky,D.A.,1992.F-Cl-OH partitioning between biotite and apatite.Geochimica et Cosmochimica Acta 56,3435-3467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700