用户名: 密码: 验证码:
基于GIS和受体模型的枸杞地土壤重金属空间分布特征及来源解析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial Distribution Characteristics and Source Apportionment of Soil Heavy Metals in Chinese Wolfberry Land Based on GIS and the Receptor Model
  • 作者:白一茹 ; 张兴 ; 赵云鹏 ; 王幼奇 ; 钟艳霞
  • 英文作者:BAI Yi-ru;ZHANG Xing;ZHAO Yun-peng;WANG You-qi;ZHONG Yan-xia;College of Resources and Environment,Ningxia University;Arid Area Characteristic Resources and Environmental Governance Department of Education International Cooperation Joint Laboratory;
  • 关键词:宁夏 ; 重金属 ; 源解析 ; APCS受体模型 ; 枸杞
  • 英文关键词:Ningxia;;heavy metal;;source apportionment;;APCS model;;Chinese wolfberry
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:宁夏大学资源环境学院;旱区特色资源与环境治理教育部国际合作联合实验室;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金项目(41761049,41867003);; 宁夏高等学校项目(NGY2017015);; 宁夏自然科学基金项目(2018AAC03027);; 宁夏青年科技人才托举工程项目;; 宁夏重点研发计划重大项目(2018BFG02016)
  • 语种:中文;
  • 页:395-404
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X53
摘要
通过测定"万亩枸杞示范园"119个表层(0~20 cm)土壤样品中重金属铅(Pb)、镍(Ni)、锌(Zn)、锰(Mn)、铜(Cu)、铬(Cr)和镉(Cd)含量,以宁夏土壤背景值为评价标准,利用单因子指数、内梅罗综合指数和潜在生态危险指数评价土壤重金属污染状况,借助绝对因子分析/多元线性回归受体模型(APCS-MLR)与地统计相结合的方法,对土壤重金属空间分布及来源进行分析.结果表明,Pb、Ni、Zn、Mn、Cu、Cr和Cd含量分别为34. 78、52. 376、83. 692、641. 114、38. 130、87. 257和0. 149 mg·kg~(-1),均低于国家土壤污染风险筛选值但超过了宁夏土壤背景值.内梅罗综合指数显示枸杞地81. 51%样点的土壤重金属呈现轻度污染,16. 81%样点呈现中度污染,1. 68%未受重金属污染.潜在生态危险复合指数表明,13. 45%样点表现为轻微生态风险,86. 55%样点表现为中等生态风险.枸杞地土壤重金属有4种主要来源:自然源、工业活动源、交通源和农业活动源,其中Ni和Cr的来源以自然源为主,贡献率分别为55. 49%和64. 66%,Pb和Mn的来源以工业活动源为主,贡献率分别为46. 93%和42. 53%,Zn和Cu的来源以交通源为主,贡献率分别为43. 51%和53. 71%,Cd的来源以农业活动源为主,贡献率为76. 79%.枸杞地土壤重金属含量明显受人类活动影响且来源复杂,应根据其贡献率加强控制,确保中宁枸杞土壤资源的可持续利用.
        A total of 119 surface soil samples(depth of 0-20 cm) were collected from a Chinese wolfberry demonstration garden in Zhongning of Ningxia,and samples were analyzed for seven heavy metals(Pb,Ni,Zn,Mn,Cu,Cr,and Cd). The single factor index,comprehensive index,and potential ecological risk were used to assess the soil heavy metal contamination with the soil background values of Ningxia as the evaluation standards. The absolute principal component scores and multivariate linear regression(APCS-MLR) model as well as geostatistic analysis were combined to identify and apportion the pollution sources of soil heavy metals.The results showed that the average concentrations of Pb,Ni,Zn,Mn,Cu,Cr,and Cd in soils were 34. 78,52. 376,83. 692,641. 114,38. 130,87. 257,and 0. 149 mg·kg~(-1),respectively. The mean concentrations of heavy metals were higher than the local soil background values but lower than the risk screening values for soil contamination of agricultural land. The comprehensive index results showed that the pollution degree of soil heavy metals was at the slightly polluted level in 81. 51% of the samples,at the moderately polluted level in 16. 81% of the samples,and at the unpolluted level in 1. 68% of the samples. The comprehensive index values for potential ecological hazards were less than 60 in 13. 45% of the samples,and these values were associated with a slight potential for ecological risks. The comprehensive index values for potential ecological hazards were less than 120 and more than 60 in 86. 55% of the samples,and these values were associated with a moderate potential for ecological risks. The four main pollution sources of soil heavy metals in the study area included natural sources,industrial activity,traffic,and agricultural activity. Natural sources were the main source of Ni and Cr with average contribution rates of 55. 49% and 64. 66%,respectively. Industrial activity was the main source of Pb and Mn with average contribution rates of 46. 93% and 42. 53%,respectively. Traffic was the main source of Zn and Cu with average contribution rates of 43. 51% and 53. 71%,respectively. Agricultural activity was the main source of Cd with an average contribution rate of 76. 79%. The study results indicated that soil heavy metals have tended to concentrate in the Chinese wolfberry demonstration garden,and the sources of heavy metals were complex and obviously influenced by human activities.Controls should be strengthened for sources that contribute to soil heavy metals to ensure the sustainable utilization of soil resources in the Chinese wolfberry land.
引文
[1]齐雁冰,楚万林,蒲洁,等.陕北某化工企业周围污灌区土壤-作物系统重金属积累特征及评价[J].环境科学,2015,36(4):1453-1460.Qi Y B,Chu W L,Pu J,et al. Accumulation characteristics and evaluation of heavy metals in soil-crop system affected by wastewater irrigation around a chemical factory in Shenmu County[J]. Environmental Science,2015,36(4):1453-1460.
    [2]王美娥,彭驰,陈卫平.宁夏干旱地区工业区对农田土壤重金属累积的影响[J].环境科学,2016,37(9):3532-3539.Wang M E,Peng C,Chen W P. Impacts of industrial zone in arid area in Ningxia Province on the accumulation of heavy metals in agricultural soils[J]. Environmental Science,2016,37(9):3532-3539.
    [3]环境保护部,国土资源部.全国土壤污染状况调查公报[R].北京:环境保护部,国土资源部,2014.
    [4]韩培培,谢俭,王剑,等.丹江口水库新增淹没区农田土壤重金属源解析[J].中国环境科学,2016,36(8):2437-2443.Han P P,Xie J,Wang J,et al. Source apportionment of heavy metals in farmland soil from new submerged area in Danjiangkou Reservoir[J]. China Environmental Science,2016,36(8):2437-2443.
    [5]王峰,单睿阳,陈玉真,等.闽中某矿区县茶园土壤和茶叶重金属含量及健康风险[J].中国环境科学,2018,38(3):1064-1072.Wang F,Shan R Y,Chen Y Z,et al. Concentrations and health risk assessment of heavy metals in tea garden soil and tea-leaf from a mine county in central Fujian province[J]. China Environmental Science,2018,38(3):1064-1072.
    [6] Zhang W T,You M,Hu Y H. The distribution and accumulation characteristics of heavy metals in soil and plant from huainan coalfield, china[J]. Environmental Progress&Sustainable Energy,2016,35(4):1098-1104.
    [7]张小敏,张秀英,钟太洋,等.中国农田土壤重金属富集状况及其空间分布研究[J].环境科学,2014,35(2):692-703.Zhang X M,Zhang X Y,Zhong T Y,et al. Spatial distribution and accumulation of heavy metal in arable Land soil of China[J]. Environmental Science,2014,35(2):692-703.
    [8]王幼奇,白一茹,王建宇.基于GIS的银川市不同功能区土壤重金属污染评价及分布特征[J].环境科学,2016,37(2):710-716.Wang Y Q,Bai Y R,Wang J Y. Distribution of urban soil heavy metal and pollution evaluation in different functional zones of Yinchuan City[J]. Environmental Science,2016,37(2):710-716.
    [9]董立宽,方斌.茶园土壤重金属乡镇尺度下空间异质性分析———以江浙优质名茶种植园为例[J].地理研究,2017,36(2):391-404.Dong L K,Fang B. Analysis of spatial heterogeneity of soil heavy metals in tea plantation:Case study of high quality tea garden in Jiangsu and Zhejiang[J]. Geographical Research,2017,36(2):391-404.
    [10]樊新刚,米文宝,马振宁,等.宁夏石嘴山河滨工业园区表层土壤重金属污染的时空特征[J].环境科学,2013,34(5):1887-1894.Fan X G,Mi W B,Ma Z N,et al. Spatial and temporal characteristics of heavy metal concentration of surface soil in Hebin industrial park in Shizuishan Northwest China[J].Environmental Science,2013,34(5):1887-1894.
    [11]蔡燕子,谢湉,于淑玲,等.黄河三角洲农田土壤-作物系统重金属污染风险评估[J].北京师范大学学报(自然科学版),2018,54(1):48-55.Cai Y Z,Xie T,Yu S L,et al. Assessment of the heavy metal pollution risks in soil-crop systems of farmlands in the Yellow River Delta[J]. Journal of Beijing Normal University(Natural Science),2018,54(1):48-55.
    [12]王幼奇,白一茹,王建宇.引黄灌区不同尺度农田土壤重金属空间分布及污染评价:以银川市兴庆区为例[J].环境科学,2014,35(7):2714-2720.Wang Y Q,Bai Y R,Wang J Y. Distribution of soil heavy metal and pollution evaluation on the different sampling scales in farmland on Yellow River irrigation area of Ningxia:A case study in Xingqing County of Yinchuan City[J]. Environmental Science,2014,35(7):2714-2720.
    [13] Qu M K,Wang Y,Huang B,et al. Source apportionment of soil heavy metals using robust absolute principal component scoresrobust geographically weighted regression(rapcs-rgwr)receptor model[J]. Science of the Total Environment,2018,626:203-210.
    [14]瞿明凯,李卫东,张传荣,等.基于受体模型和地统计学相结合的土壤镉污染源解析[J].中国环境科学,2013,33(5):854-860.Qu M K,Li W D,Zhang C R,et al. Source apportionment of soil heavy metal Cd based on the combination of receptor model and geostatistics[J]. China Environmental Science,2013,33(5):854-860.
    [15]宁翠萍,李国琛,王颜红,等.细河流域农田土壤重金属污染评价及来源解析[J].农业环境科学学报,2017,36(3):487-495.Ning C P,Li G C,Wang Y H,et al. Evaluation and source apportionment of heavy metal pollution in Xihe watershed farmland soil[J]. Journal of Agro-Environment Science,2017,36(3):487-495.
    [16]武媛媛,李如梅,彭林,等.运城市道路扬尘化学组成特征及来源分析[J].环境科学,2017,38(5):1799-1806.Wu Y Y,Li R M,Peng L,et al. Chemical compositions and source apportionment of road dust in Yuncheng[J].Environmental Science,2017,38(5):1799-1806.
    [17]陈秀端,卢新卫.基于受体模型与地统计的城市居民区土壤重金属污染源解析[J].环境科学,2017,38(6):2513-2521.Chen X D,Lu X W. Source apportionment of soil heavy metals in city residential areas based on the receptor model and geostatistics[J]. Environmental Science,2017,38(6):2513-2521.
    [18]陈丹青,谢志宜,张雅静,等.基于PCA/APCS和地统计学的广州市土壤重金属来源解析[J].生态环境学报,2016,25(6):1014-1022.Chen D Q,Xie Z Y,Zhang Y J,et al. Source apportionment of soil heavy metals in Guangzhou based on the PCA/APCS model and geostatistics[J]. Ecology and Environment Sciences,2016,25(6):1014-1022.
    [19]艾建超,王宁,杨净.基于UNMIX模型的夹皮沟金矿区土壤重金属源解析[J].环境科学,2014,35(9):3530-3536.Ai J C,Wang N,Yang J. Source apportionment of soil heavy metals in Jiapigou goldmine based on the UNMIX model[J].Environmental Science,2014,35(9):3530-3536.
    [20]罗成科,毕江涛,肖国举,等.宁东基地不同工业园区周边土壤重金属污染特征及其评价[J].生态环境学报,2017,26(7):1221-1227.Luo C K,Bi J T,Xiao G J,et al. Pollution characteristics and assessment of heavy metals in soil of different industry zones of Ningdong Base in Ningxia,China[J]. Ecology and Environment Sciences,2017,26(7):1221-1227.
    [21]肖明,杨文君,孙小凤,等.土壤AS动态影响下枸杞质量评价及环境风险预测[J].农业资源与环境学报,2014,31(3):273-278.Xiao M, Yang W J, Sun X F, et al. Wolfberry quality assessment and environmental risks prediction by the effects of arsenic dynamic in soil[J]. Journal of Agricultural Resources and Environment,2014,31(3):273-278.
    [22]国家环境保护局.中国土壤元素背景值[M].北京:中国环境科学出版社,1990. 330-493.
    [23] Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research,1980,14(8):975-1001.
    [24]齐鹏,余树全,张超,等.城市地表水表层沉积物重金属污染特征与潜在生态风险评估:以永康市为例[J].环境科学,2015,36(12):4486-4493.Qi P,Yu S Q,Zhang C,et al. Pollution characteristics and potential ecological risk of heavy metals in urban surface water sediments from Yongkang[J]. Environmental Science,2015,36(12):4486-4493.
    [25]郑睛之,王楚栋,王诗涵,等.典型小城市土壤重金属空间异质性及其风险评价:以临安市为例[J].环境科学,2018,39(6):2875-2883.Zheng Q Z,Wang C D,Wang S H,et al. Spatial variation of soil heavy metals in Lin'an City and its potential risk evaluation[J]. Environmental Science,2018,39(6):2875-2883.
    [26]李春芳,曹见飞,吕建树,等.不同土地利用类型土壤重金属生态风险与人体健康风险[J].环境科学,2018,39(12):5628-5638.Li C F,Cao J F,LüJ S,et al. Ecological risk assessment of soil heavy metals for different types of land use and evaluation of human health[J]. Environmental Science,2018,39(12):5628-5638.
    [27] Wilding L P. Spatial variability:its documentation,accommodation,and implication to soil surveys[A]. In:Nielsen D R, Bouma J(Eds.). Soil Spatial Variability[M].Wageningen:Pudoc.,1985. 166-194.
    [28]吕建树,何华春.江苏海岸带土壤重金属来源解析及空间分布[J].环境科学,2018,39(6):2853-2864.LüJ S,He H C. Identifying the origins and spatial distributions of heavy metals in the soils of the Jiangsu coast[J].Environmental Science,2018,39(6):2853-2864.
    [29]于元赫,吕建树,王亚梦.黄河下游典型区域土壤重金属来源解析及空间分布[J].环境科学,2018,39(6):2865-2874.Yu Y H,LüJ S,Wang Y M. Source identification and spatial distribution of heavy metals in soils in typical areas around the Lower Yellow River[J]. Environmental Science,2018,39(6):2865-2874.
    [30] MicóC,RecataláL,Peris M,et al. Assessing heavy metal sources in agricultural soils of an european mediterranean area by multivariate analysis[J]. Chemosphere,2006,65(5):863-872.
    [31]戴彬,吕建树,战金成,等.山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J].环境科学,2015,36(2):507-515.Dai B,LüJ S,Zhan J C,et al. Assessment of sources,spatial distribution and ecological risk of heavy metals in soils in a typical industry-based city of Shandong Province,Eastern China[J]. Environmental Science,2015,36(2):507-515.
    [32] Lv J S,Liu Y,Zhang Z L,et al. Identifying the origins and spatial distributions of heavy metals in soils of ju country(eastern china)using multivariate and geostatistical approach[J]. Journal of Soils and Sediments,2015,15(1):163-178.
    [33]王成,袁旭音,陈旸,等.苏州地区水稻土重金属污染源解析及端元影响量化研究[J].环境科学学报,2015,35(10):3269-3275.Wang C, Yuan X Y, Chen Y, et al. Quantification of contributions from different sources on heavy metals accumulation in the paddy soil from Suzhou area[J]. Acta Scientiae Circumstantiae,2015,35(10):3269-3275.
    [34]林承奇,胡恭任,于瑞莲,等.九龙江近岸表层沉积物重金属污染评价及来源解析[J].中国环境科学,2016,36(4):1218-1225.Lin C Q,Hu G R,Yu R L,et al. Pollution assessment and source analysis of heavy metals in offshore surface sediments from Jiulong River[J]. China Environmental Science,2016,36(4):1218-1225.
    [35] Wojcieszek J,Kwiatkowski P,Ruzik L. Speciation analysis and bioaccessibility evaluation of trace elements in goji berries(Lycium barbarum,L.)[J]. Journal of Chromatography A,2017,1492:70-78.
    [36]王奂仑,耿贵工,韩燕,等.青海省枸杞种植土壤重金属富集现状及潜在风险分析[J].青海大学学报,2018,36(1):34-39.Wang H L,Gen G G,Han Y,et al. Accumulation status and potential risk analysis of heavy metals in soil of Lycium barbarum L. plantation in Qinghai[J]. Journal of Qinghai University,2018,36(1):34-39.
    [37]宋波,张云霞,庞瑞,等.广西西江流域农田土壤重金属含量特征及来源解析[J].环境科学,2018,39(9):4317-4326.Song B,Zhang Y X,Pang R,et al. Analysis of characteristics and sources of heavy metals in farmland soils in the Xijiang river draining of Guangxi[J]. Environmental Science,2018,39(9):4317-4326.
    [38]宋志廷,赵玉杰,周其文,等.基于地质统计及随机模拟技术的天津武清区土壤重金属源解析[J].环境科学,2016,37(7):2756-2762.Song Z T, Zhao Y J, Zhou Q W, et al. Applications of geostatistical analyses and stochastic models to identify sources of soil heavy metals in Wuqing district, Tianjin, China[J].Environmental Science,2016,37(7):2756-2762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700