上海市郊道路地表径流多环芳烃污染特征对比及源解析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison and Source Apportionment of PAHs Pollution of Runoff from Roads in Suburb and Urban Areas of Shanghai
  • 作者:吴杰 ; 熊丽君 ; 吴健 ; 沙晨燕 ; 唐浩 ; 林匡飞 ; 李大雁 ; 沈城
  • 英文作者:WU Jie;XIONG Li-jun;WU Jian;SHA Chen-yan;TANG Hao;LIN Kuang-fei;LI Da-yan;SHNE Cheng;State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process,School of Resources and Environmental Engineering,East China University of Science and Technology;Shanghai Academy of Environmental Sciences;
  • 关键词:交通道路 ; 地表径流 ; 多环芳烃(PAHs) ; 源解析 ; PMF模型
  • 英文关键词:traffic roads;;surface runoff;;polycyclic aromatic hydrocarbons(PAHs);;source analysis;;positive matrix factorization(PMF) model
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:华东理工大学资源与环境工程学院国家环境保护化工过程环境风险评价与控制重点实验室;上海市环境科学研究院;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:05
  • 基金:上海市科委项目(17DZ1202304);; 上海市环境保护局重大项目(沪环科[2016]第5号);; 国家自然科学基金项目(51679141)
  • 语种:中文;
  • 页:244-252
  • 页数:9
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X52
摘要
随着城市化发展,我国城市地表径流污染问题日益突出,交通道路地表径流多环芳烃(polycyclic aromatic hydrocarbons,PAHs)污染受到广泛关注.以上海中心城区(漕宝路)和郊区(嘉金高速)交通道路为研究对象,采集2017~2018年7场降雨地表动态径流水样,分析道路地表径流多环芳烃的质量浓度特征及组成比例,并采用特征比值法和正定矩阵因子法(positive matrix factorization,PMF)进行PAHs源解析,从而明确交通道路地表径流PAHs的污染特征及来源差异.结果表明,郊区嘉金高速Σ16PAHs的几何均值(5 539. 2 ng·L~(-1))高于市区漕宝路(548. 1 ng·L~(-1)) 10倍以上,与嘉金高速货车比例大且清扫频率相对较低有关.两个点位的苯并[a]芘[benzo(a) pyrene,Ba P]均超过国家排放标准,尤其嘉金高速超标21倍.漕宝路和嘉金高速径流PAHs组分比例差异不大,均以4~6环为主,占比约80%.通过特征比值法定性源解析发现,漕宝路PAHs主要来自燃煤源和交通源;嘉金高速PAHs主要来自石油、煤等燃烧源和交通源. PMF定量源解析表明,漕宝路径流PAHs来源以燃气、燃煤源为主,占48. 6%,其次为交通排放源和石油源,分别占29. 8%和21. 7%;嘉金高速道路径流PAHs来源贡献比从大到小依次为交通排放源、燃煤源、石油源以及炼焦源,其贡献率分别为38. 5%、34. 6%、14. 6%和12. 6%.市、郊道路的PAHs来源及贡献率存在显著差异,燃气、燃煤源是市区漕宝路地表径流PAHs主要来源,与其所在徐汇区人口密度大、燃气使用量相对较多有关;交通排放源是郊区嘉金高速地表径流PAHs主要来源,与其客、货车流量相对较大、其排放PAHs远高于轿车有关;另外嘉金高速PAHs来源还存在炼焦源,与青浦区工业煤炭使用量较大有关.
        Rapid urbanization has driven surface runoff pollution in urban areas to a serious state. In particular,polycyclic aromatic hydrocarbons( PAHs) from road surface runoff has attracted wide attention. Two traffic roads in Shanghai( Caobao Road in an urban central area,and Jiajin Expressway in the suburbs) were identified as research objects. Runoff samples from these two traffic roads were collected for 7 rainfall events between 2007 and 2018. Then,the concentration characteristics and composition ratio of PAHs were analyzed. The differences in pollution sources of runoff PAHs from two types of traffic roads were identified based on characteristic ratio method and positive matrix factorization( PMF). The results showed that the geometric mean value( 5 539. 2 ng·L~(-1)) of 16 PAHs of runoff from Jiajin Expressway in the suburbs was 10 times greater than that from Caobao Road( 548. 1 ng·L~(-1)),which was related to a higher truck traffic and a lower cleaning frequency on Jiajin Expressway. The benzo( a) pyrene( Ba P) concentration on both roads exceeded the national emission standard,and the amount in the Jiajin Expressway was up to 21 times higher than the standard. There was no significant difference in the composition of PAHs of runoff between Caobao Road and Jiading Expressway,and 4-6 ring were dominant and responsible for 80% of total PAHs loads in both sites. Based on the analysis of the characteristic ratio method,the PAHs of runoff from Caobao Road mostly came from coal-fired sources and traffic sources,while that from Jiajin Expressway were mostly from fossil fuels,coal,and other traffic sources. Quantitative source analysis through PMF method showed that the primary sources of PAHs were gas and coal,accounting for 48. 6%,followed by traffic emission sources( 29. 8%),and oil sources( 21. 7%). The contribution ratios of PAHs sources of runoff from Jiajin Expressway,sorted in descending order,are: traffic emission sources( 38. 5%),coal-fired sources( 34. 6%),oil sources( 14. 6%),and coking sources( 12. 6%). PAHs sources and contribution rates between urban and suburban roads are completely different. Gas and coal were the main sources of PAHs of runoff from Caobao Road,which was related to the high population density and relatively large gas consumption in the Xuhui District. Traffic emission was the main source of PAHs from surface runoff on Jiajin Expressway,which was related to the massive flow of coaches and trucks,and their higher PAHs emission compared to small cars. In addition,there are still coking sources of PAHs of runoff from Jiajin Expressway,which can be related to the massive industrial coal consumption in the Qingpu District.
引文
[1]Deletic A B,Maksimovic C T.Evaluation of water quality factors in storm runoff from paved areas[J].Journal of Environmental Engineering,1998,124(9):869-879.
    [2]Deletic A,Orr D W.Pollution buildup on road surfaces[J].Journal of Environmental Engineering,2005,131(1):49-59.
    [3]Perdikaki K,Mason C F.Impact of road run-off on receiving streams in eastern England[J].Water Research,1999,33(7):1627-1633.
    [4]张玉凤,宋永刚,田金,等.辽东湾大气中多环芳烃的含量组成及气粒分配[J].环境科学,2018,39(4):1527-1536.Zhang Y F,Song Y G,Tian J,et al.Occurrence and gasparticle partitioning of polycyclic aromatic hydrocarbons in the air of Liaodong Bay[J].Environmental Science,2018,39(4):1527-1536.
    [5]Beasley G,Kneale P.Reviewing the impact of metals and PAHs on macroinvertebrates in urban watercourses[J].Progress in Physical Geography,2002,26(2):236-270.
    [6]谢继锋,李静静,窦月芹,等.不同下垫面类型对地表径流中多环芳烃污染特征的影响分析[J].环境化学,2015,34(4):733-740.Xie J F,Li J J,Dou Y Q,et al.Pollution characteristics of PAHs in urban runoffs on different types of underlying surfaces[J].Environmental Chemistry,2015,34(4):733-740.
    [7]武子澜,杨毅,刘敏,等.城市不同下垫面降雨径流多环芳烃(PAHs)分布及源解析[J].环境科学,2014,35(11):4148-4156.Wu Z L,Yang Y,Liu M,et al.Distribution and source apportionment of polycyclic aromatic hydrocarbons(PAHs)in urban rainfall runoff[J].Environmental Science,2014,35(11):4148-4156.
    [8]吴巧花,陈步峰,裴男才,等.广州不同地表下垫面对暴雨径流PAHs含量的影响特征[J].生态环境学报,2018,27(4):736-743.Wu Q H,Chen B F,Pei N C,et al.The influence characteristics of the polycyclic aromatic hydrocarbons(PAHs)content of rainstorm runoff in different surface in Guangzhou city[J].Ecology and Environmental Sciences,2018,27(4):736-743.
    [9]Zhang W,Zhang S C,Wan C,et al.Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff,dust,rain and canopy throughfall[J].Environmental Pollution,2008,153(3):594-601.
    [10]李大雁.交通道路沿线农田土壤多环芳烃的分布特征和生态风险研究[D].上海:华东理工大学,2018.Li D Y.Distribution and ecological risk assessmennt of polycyclic aromatic hydrocarbons(PAHs)in agricultural soil of roadside[D].Shanghai:East China University of Science and Technology,2018.
    [11]上海统计年鉴局.2017年上海统计年鉴[M].北京:中国统计出版社,2017.
    [12]Yunker M B,Macdonald R W,Vingarzan R,et al.PAHs in the Fraser River basin:A critical appraisal of PAH ratios as indicators of PAH source and composition[J].Organic Geochemistry,2002,33(4):489-515.
    [13]李嘉康,宋雪英,魏建兵,等.沈北新区土壤中多环芳烃污染特征及源解析[J].环境科学,2018,39(1):379-388.Li J K,Song X Y,Wei J B,et al.Pollution characteristics and source apportionment of polycyclic aromatic hydrocarbons in soils of Shenyang North New Area[J].Environmental Science,2018,39(1):379-388.
    [14]李嘉康,宋雪英,崔小维,等.土壤中多环芳烃源解析技术研究进展[J].生态科学,2017,36(5):223-231.Li J K,Song X Y,Cui X W,et al.Research advances in source apportionment of polycyclic aromatic hydrocarbons in soil[J].Ecological Science,2017,36(5):223-231.
    [15]韩景超,毕春娟,陈振楼,等.城市不同下垫面径流中PAHs污染特征及源辨析[J].环境科学学报,2013,33(2):503-510.Han J C,Bi C J,Chen Z L,et al.Pollution characteristics and source identification of PAHs in urban runoff from different surfaces[J].Acta Scientiae Circumstantiae,2013,33(2):503-510.
    [16]Lee B K,Dong T T T.Effects of road characteristics on distribution and toxicity of polycyclic aromatic hydrocarbons in urban road dust of Ulsan,Korea[J].Journal of Hazardous Materials,2010,175(1-3):540-550.
    [17]Smith D J T,Harrison R M.Concentrations,trends and vehicle source profile of polynuclear aromatic hydrocarbons in the U.K.atmosphere[J].Atmospheric Environment,1996,30(14):2513-2525.
    [18]Ashley J T F,Baker J E.Hydrophobic organic contaminants in surficial sediments of baltimore harbor:Inventories and sources[J].Environmental Toxicology and Chemistry,1999,18(5):838-849.
    [19]Norris G,Vedantham R,Wade K,et al.EPA Positive Matrix Factorization(PMF)3.0 Fundamentals&User Guide[M].Washington,DC:Environmental Protection Agency,2008.
    [20]Yakovleva E,Hopke P K,Wallace L.Receptor modeling assessment of particle total exposure assessment methodology data[J].Environmental Science&Technology,1999,33(20):3645-3652.
    [21]Simcik M F,Eisenreich S J,Lioy P J,et al.Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan[J].Atmospheric Environment,1999,33(30):5071-5079.
    [22]Yang F,Zhai Y B,Chen L,et al.The seasonal changes and spatial trends of particle-associated polycyclic aromatic hydrocarbons in the summer and autumn in Changsha city[J].Atmospheric Research,2010,96(1):122-130.
    [23]Khalili N R,Scheff P A,Holsen T M.PAH source fingerprints for coke ovens,diesel and,gasoline engines,highway tunnels,and wood combustion emissions[J].Atmospheric Environment,1995,29(4):533-542.
    [24]Tian F L,Chen J W,Qiao X L,et al.Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian,China:Factor analysis with non-negative constraints combined with local source fingerprints[J].Atmospheric Environment,2009,43(17):2747-2753.
    [25]Harrison R M,Smith D J T,Luhana L.Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham,U.K[J].Environmental Science&Technology,1996,30(3):825-832.
    [26]苗迎,孔祥胜,李成展.重工业城市岩溶地下水中多环芳烃污染特征及来源[J].环境科学,2019,40(1):239-247.Miao Y,Kong X S,Li C Z.Distribution and sources of polycyclic aromatic hydrocarbons in a karst groundwater system in a Strongly industrial city[J].Environmental Science,2019,40(1):239-247.
    [27]Larsen R K,Baker J E.Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere:A comparison of three methods[J].Environmental Science&Technology,2003,37(9):1873-1881.
    [28]Li J,Zhang G,Li X D,et al.Source seasonality of polycyclic aromatic hydrocarbons(PAHs)in a subtropical city,Guangzhou,South China[J].Science of the Total Environment,2006,355(1-3):145-155.
    [29]Lee J H,Gigliotti C L,Offenberg J H,et al.Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed[J].Atmospheric Environment,2004,38(35):5971-5981.
    [30]Kavouras I G,Koutrakis P,Tsapakis M,et al.Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons(PAHs)using multivariate methods[J].Environmental Science&Technology,2001,35(11):2288-2294.
    [31]Dong Trang T T,Lee B K.Characteristics,toxicity,and source apportionment of polycylic aromatic hydrocarbons(PAHs)in road dust of Ulsan,Korea[J].Chemosphere,2009,74(9):1245-1253.
    [32]Khairy M A,Lohmann R.Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria,Egypt[J].Chemosphere,2013,91(7):895-903.
    [33]Marr L C,Kirchstetter T W,Harley R A,et al.Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions[J].Environmental Science&Technology,1999,33(18):3091-3099.
    [34]Tian F L,Li F Y,Wang D G,et al.Source apportionment of polycyclic aromatic hydrocarbons in sediment by the application of non-negative factor analysis:A case study of Dalian Bay[J].International Journal of Environmental Research and Public Health,2018,15(4):761.
    [35]Wang C H,Wu S H,Zhou S L,et al.Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing:Concentration,source,spatial distribution,and potential human health risk[J].Science of the Total Environment,2015,527-528:375-383.
    [36]边璐,李田,侯娟.PMF和PCA/MLR法解析上海市高架道路地表径流中多环芳烃的来源[J].环境科学,2013,34(10):3840-3846.Bian L,Li T,Hou J.Source apportionment of polycyclic aromatic hydrocarbons using two mathematical models for runoff of the Shanghai elevated inner highway,China[J].Environmental Science,2013,34(10):3840-3846.