用户名: 密码: 验证码:
荒漠草原中间锦鸡儿冠层截留特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of canopy interception by Caragana intermedia in desert grasslands
  • 作者:田娜 ; 古君龙 ; 杨新国 ; 王磊 ; 杨东东 ; 苗翻 ; 孟明
  • 英文作者:TIAN Na;GU Junlong;YANG Xinguo;WANG Lei;YANG Dongdong;MIAO Fan;MENG Ming;Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China/Ministry of Education Key Laboratory for Ecosystem in Northwest China, Ningxia University;
  • 关键词:荒漠草原 ; 中间锦鸡儿 ; 衰退 ; 冠层截留
  • 英文关键词:desert grassland;;Caragana intermedia;;decline;;canopy interception
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:宁夏大学西北土地退化与生态恢复省部共建国家重点实验室培育基地/西北退化生态系统恢复与重建教育部重点实验室;
  • 出版日期:2019-07-23
  • 出版单位:生态学报
  • 年:2019
  • 期:14
  • 基金:国家自然科学基金项目(31460161);; 宁夏大学西部一流学科建设项目(NXYLXK2017B06);宁夏大学西部一流大学建设项目(GZXM2017001);宁夏大学研究生创新项目(GIP2019043)
  • 语种:中文;
  • 页:269-277
  • 页数:9
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:Q948
摘要
以荒漠草原人工中间锦鸡儿(Caragana intermedia)为研究对象,利用2016—2017年监测获取的26次降雨事件,对比分析了两组灌丛(自然组和人工组)的冠层截留特征。结果表明:(1)试验期间共观测到有效降雨33次,总降雨量为251 mm,次平均降雨量和降雨强度分别为7.6 mm和1.14 mmSymbolo@@h,以雨量<2 mm,雨强<1 mm/h和降雨历时2—5 h的降雨出现次数最多;(2)自然组和人工组中间锦鸡儿平均截留量分别为1.11 mm和0.72 mm,平均截留率分别为24.81%和15.95%,两组灌丛截留存在极显著差异(P<0.01);(3)在雨量级>15 mm时,自然组(4.57%,CV=73.38%)和人工组(5.25%,CV=51.96%)平均截留率变异性相差最大;(4)自然组和人工组截留量与降雨量,降雨历时和降雨强度之间的关系可以用幂函数描述,截留率与三者的关系均用指数函数描述较好。在降雨特征相同的情况下,灌丛形态特征是影响中间锦鸡儿冠层截留的关键因素。
        Canopy interception, an important component of water balance in arid and semiarid environments, plays a key role in re-vegetation and the hydrological cycle. Research regarding canopy rainfall interception across the sand-stabilizing shrub, Caragana intermedia, can aid in the elucidation of the eco-hydrological mechanism in desert grasslands. In this study, planted C. intermedia in a desert grassland was selected, and characteristics of canopy interception in two groups of shrubs(natural and planted) were compared and analyzed by monitoring 26 rainfall events from 2016 to 2017. The results showed that a total of 33 effective rainfall events were observed during the experiment, and the total and average amounts, and intensity of rainfall were 251 mm, 7.6 mm, and 1.14 mmSymbolo@@h, respectively. Overall, rainfall events of less than 2 mm and 1 mmSymbolo@@h, as well as a 2—5 h duration had the highest frequency. The average interception of C. intermedia in the natural and planted groups were 1.11 mm and 0.72 mm, respectively, and the average interception percentages were 24.81% and 15.95%, respectively. Significant differences(P<0.01) in interception were detected between the two groups. When the rainfall amount was greater than 15 mm, the natural group(4.57%, CV=73.38%) and the planted group(5.25%, CV=51.96%) exhibited the greatest differences in average interception percentages. Small amounts of rainfall contributed to a higher percentage of interception. Furthermore, the interception amount of the natural and planted group exhibited a power function that tended to decrease with increasing rainfall amount, duration, and intensity, whereas the interception percentage for the two groups had an obvious exponential function in the relationship with the rainfall amount, duration, and intensity. The canopy interception of planted C. intermedia was significantly reduced, which was conducive to the improvement of the efficiency of precipitation utilization and is of great significance in the elucidation of the hydrological mechanism of decline of canopy interception by planted vegetation. Morphological characteristics of shrubs were the key factors affecting the canopy interception of C. intermedia under the same rainfall conditions. Based on the morphological structures of different shrubs, the canopy structure(height, crown projection area, leaf area) affected canopy interception progress of shrubs.
引文
[1] He Z B,Yang J J,Du J,Zhao W Z,Liu H,Chang X X.Spatial variability of canopy interception in a spruce forest of the semiarid mountain regions of China.Agricultural and Forest Meteorology,2014,188:58- 63.
    [2] Davies-Barnard T,Valdes P J,Jones C D,Singarayer J S.Sensitivity of a coupled climate model to canopy interception capacity.Climate Dynamics,2014,42(7/8):1715- 1732.
    [3] Wang X P,Zhang Y F,Hu R,Pan Y X,Xu H J,Shi W,Jin Y X,Yasuda H.Revisit of event-based rainfall characteristics at Shapotou area in northern China.Sciences in Cold and Arid Regions,2016,8(6):477- 484.
    [4] 杨阳,朱元骏,安韶山.黄土高原生态水文过程研究进展.生态学报,2018,38(11):4052- 4063.
    [5] Liang W,Yang Y T,Fan D M,Guan H D,Zhang T,Long D,Zhou Y,Bai D.Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010.Agricultural and Forest Meteorology,2015,204:22- 36.
    [6] 杨磊,张涵丹,陈利顶.黄土宽梁缓坡丘陵区次降雨对土壤水分补给效率与阈值研究.中国科学:地球科学,2018,48(4):457- 466.
    [7] 樊才睿,李畅游,贾克力,孙标,史小红,高宏斌.不同放牧制度下呼伦湖流域草原植被冠层截留.生态学报,2015,35(14):4716- 4724.
    [8] Li Y,Cai T J,Man X L,Sheng H C,Ju C Y.Canopy interception loss in a Pinus sylvestris var.mongolica forest of Northeast China.Journal of Arid Land,2015,7(6):831- 840.
    [9] Stringham T K,Snyder K A,Snyder D K,Lossing S S,Carr C A,Stringham B J.Rainfall interception by Singleleaf Piňon and Utah juniper:implications for stand-level effective precipitation.Rangeland Ecology & Management,2018,71(3):327- 335.
    [10] 徐丽宏,时忠杰,王彦辉,熊伟,于澎涛.六盘山主要植被类型冠层截留特征.应用生态学报,2010,21(10):2487- 2493.
    [11] Kermavnar J,Vilhar U.Canopy precipitation interception in urban forests in relation to stand structure.Urban Ecosystems,2017,20(6):1373- 1387.
    [12] Liu Z B,Wang Y H,Tian A,Liu Y,Webb A A,Yang Y R,Zuo H J,Yu P T,Xiong W,Xu L H.Characteristics of canopy interception and its simulation with a revised Gash model for a larch plantation in the Liupan Mountains,China.Journal of Forestry Research,2018,29(1):187- 198.
    [13] Chen T W,Nguyen T M N,Kahlen K,Stützel H.Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional-structural plant model.Journal of Experimental Botany,2014,65(22):6399- 6410.
    [14] Sun J M,Yu X X,Wang H N,Jia G D,Zhao Y,Tu Z H,Deng W P,Jia J B,Chen J G.Effects of forest structure on hydrological processes in China.Journal of Hydrology,2018,561:187- 199.
    [15] Wang X P,Zhang Y F,Hu R,Pan Y X,Berndtsson R.Canopy storage capacity of xerophytic shrubs in Northwestern China.Journal of Hydrology (Amsterdam),2012,454- 455:152- 159.
    [16] 孙忠林,王传宽,王兴昌,张全智.两种温带落叶阔叶林降雨再分配格局及其影响因子.生态学报,2014,34(14):3978- 3986.
    [17] Toba T,Ohta T.Factors affecting rainfall interception determined by a forest simulator and numerical model.Hydrological Processes,2008,22(14):2634- 2643.
    [18] Iida S,Levia D F,Nanko K,Sun X C,Shimizu T,Tamai K,Shinohara Y.Correction of canopy interception loss measurements in temperate forests:a comparison of necessary adjustments among three different rain gauges based on a dynamic calibration procedure.Journal of Hydrometeorology,2018,19(3):547- 553.
    [19] Fathizadeh O,Attarod P,Pypker T G,Darvishsefat A A,Amiri G Z.Seasonal variability of rainfall interception and canopy storage capacity measured under individual oak (Quercus brantii) trees in western Iran.Journal of Agricultural Science and Technology,2013,15:175- 188.
    [20] Zimmermann A,Wilcke W,Elsenbeer H.Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador.Journal of Hydrology,2007,343(1/2):80- 96.
    [21] Cuartas L A,Tomasella J,Nobre A D,Hodnett M G,Waterloo M J,Múnera J C.Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia:marked differences between normal and dry years.Agricultural and Forest Meteorology,2007,145(1/2):69- 83.
    [22] Jetten V G.Interception of tropical rain forest:performance of a canopy water balance model.Hydrological Processes,1996,10(5):671- 685.
    [23] Llorens P,Domingo F.Rainfall partitioning by vegetation under Mediterranean conditions.A review of studies in Europe.Journal of Hydrology,2007,335(1/2):37- 54.
    [24] 荐圣淇,赵传燕,方书敏,余凯,王阳,柳逸月,郑祥霖,彭守璋.黄土高原丘陵沟壑区柠条和沙棘灌丛的降雨截留特征.应用生态学报,2012,23(9):2383- 2389.
    [25] 王正宁,王新平,刘博.荒漠灌丛内降雨和土壤水分再分配.应用生态学报,2016,27(3):755- 760.
    [26] Zhang Y F,Wang X P,Hu R,Pan Y X,Paradeloc M.Rainfall partitioning into throughfall,stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem,northwestern China.Journal of Hydrology,2015,527:1084- 1095.
    [27] Zhang Z S,Zhao Y,Li X R,Huang L,Tan H J.Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs:a 10-year observation in the Tengger Desert.Scientific Reports,2016,6:26030.
    [28] Li Q X,Wang Y S,Zhu Y J,Li H,Jia Z Q,Liu H T.Effects of soil improvement of Caragana intermedia plantations in alpine sandy land on Tibet Plateau.Acta Ecologica Sinica,2014,34(2):123- 128.
    [29] 戴雅婷,侯向阳,闫志坚,吴洪新,解继红,张晓庆,高丽.库布齐沙地两种植被恢复类型根际土壤微生物和土壤化学性质比较研究.生态学报,2016,36(20):6353- 6364.
    [30] 周静静,马红彬,周瑶,蔡育荣,吴兴旺,宿婷婷,贾希洋.荒漠草原不同带间距人工柠条林平茬对林间生境的影响.草业学报,2017,26(5):40- 50.
    [31] 宋乃平,杨明秀,王磊,王兴,肖绪培,曲文杰.荒漠草原区人工柠条林土壤水分周年动态变化.生态学杂志,2014,33(10):2618- 2624.
    [32] 赵伟,杨明秀,陈林,王磊,宋乃平,杨新国.荒漠草原人工柠条林草本层植被的结构与动态.浙江大学学报:农业与生命科学版,2015,41(6):723- 731.
    [33] Li X R,Zhang Z S,Tan H J,Gao Y H,Liu L C,Wang X P.Ecological restoration and recovery in the wind-blown sand hazard areas of northern China:relationship between soil water and carrying capacity for vegetation in the Tengger Desert.Science China Life Sciences,2014,57(5):539- 548.
    [34] 杨新国,赵伟,陈林,王磊,宋乃平.荒漠草原人工柠条林土壤与植被的演变特征.生态环境学报,2015,24(4):590- 594.
    [35] Naharuddin,Bratawinata A,Hardwinarto S,Pitopang R.Canopy interception on tree architecture models of aubreville,stone and leeuwenberg in lore lindu national park area,Indonesia.Journal of Biodiversity and Environmental Sciences,2017,10(2):75- 88.
    [36] Carlyle-Moses D E.Throughfall,stemflow,and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community.Journal of Arid Environments,2004,58(2):181- 202.
    [37] Brauman K A,Freyberg D L,Daily G C.Forest structure influences on rainfall partitioning and cloud interception:a comparison of native forest sites in Kona,Hawai′i.Agricultural and Forest Meteorology,2010,150(2):265- 275.
    [38] 徐先英,严平,郭树江,柴成武.干旱荒漠区绿洲边缘典型固沙灌木的降水截留特征.中国沙漠,2013,33(1):141- 145.
    [39] 杨志鹏,李小雁,孙永亮,刘连友,张晓影,马育军.毛乌素沙地沙柳灌丛降雨截留与树干茎流特征.水科学进展,2008,19(5):693- 698.
    [40] 李奕,蔡体久,满秀玲,田野宏.大兴安岭地区天然樟子松林降雨截留再分配特征.水土保持学报,2014,28(2):40- 44.
    [41] Zhang Z S,Li X R,Dong X J,Jia X H,He M Z,Tan H J.Rainfall interception by sand-stabilizing shrubs related to crown structure.Sciences in Cold and Arid Regions,2009,1(2):107- 119.
    [42] 刘亚,阿拉木萨,曹静.科尔沁沙地樟子松林降雨再分配特征.生态学杂志,2016,35(8):2046- 2055.
    [43] 胡鹏,朗明翰,吴晗玉,郭娜,蔡体久,盛后财.兴安落叶松林降雨再分配特征.干旱区资源与环境,2018,32(4):138- 143.
    [44] 李晶晶,白岗栓.黄土丘陵沟壑区苹果树冠截留规律.应用生态学报,2013,24(2):379- 387.
    [45] 陈书军,陈存根,邹伯才,张硕新,王得祥,侯琳.秦岭天然次生油松林冠层降雨再分配特征及延滞效应.生态学报,2012,32(4):1142- 1150.
    [46] 方书敏,赵传燕,荐圣淇,余凯.陇中黄土高原油松人工林林冠截留特征及模拟.应用生态学报,2013,24(6):1509- 1516.
    [47] 周秋文,马龙生,颜红,蔡明勇,戴丽.贵州省喀斯特阔叶林降雨截留分配特征.水土保持通报,2016,36(6):321- 325.
    [48] 刘章文,陈仁升,宋耀选,韩春坛.祁连山典型灌丛降雨截留特征.生态学报,2012,32(4):1337- 1346.
    [49] 岳祥飞,崔建垣,张铜会,王少昆,连杰,王新源,云建英.科尔沁沙地黄柳灌丛降雨截留与再分配特征.草业学报,2013,22(6):46- 52.
    [50] 王新平,康尔泗,张景光,李新荣.荒漠地区主要固沙灌木的降水截留特征.冰川冻土,2004,26(1):89- 94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700