用户名: 密码: 验证码:
北京地区大气颗粒物输送路径及潜在源分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transport pathway and potential source area of atmospheric particulates in Beijing
  • 作者:李颜君 ; 安兴琴 ; 范广洲
  • 英文作者:LI Yan-jun;AN Xing-qin;FAN Guang-zhou;School of Atmospheric Sciences, Chengdu University of Information Technology;Institute of Atmospheric Composition, Chinese Academic of Meteorological Sciences;
  • 关键词:大气颗粒物 ; 后向轨迹聚类分析 ; 潜在源贡献 ; 浓度权重轨迹 ; 北京
  • 英文关键词:atmospheric particles;;back trajectory cluster analysis;;potential source contribution;;concentration weighted trajectory;;Beijing
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:成都信息工程大学大气科学学院;中国气象科学研究院大气成分研究所;
  • 出版日期:2019-03-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划(2017YFC0210006,2016YFA0602000)
  • 语种:中文;
  • 页:21-33
  • 页数:13
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X513
摘要
利用TrajStat软件和全球资料同化系统数据,计算了2005~2016年北京市逐日72h气流后向轨迹,采用聚类分析方法,结合北京同期PM_(2.5)逐日质量浓度数据,分析北京市年及四季后向气流轨迹特征及其对北京市颗粒物浓度的影响,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨研究时期内不同季节影响北京市颗粒物质量浓度的潜在源区以及不同源区对北京颗粒物质量浓度的贡献.结果表明,就全年而言,西北输送气流占总轨迹的比例最高,达59.97%,且其输送距离最远、输送高度最高、移速最快.输送高度最低、距离最短、移速最慢的东南气流占比次之,为27.64%,东北气流占比最低为12.40%,其移速和输送距离介于前两者之间.主要污染轨迹来自山东、河北,其次为来自俄罗斯、蒙古国和内蒙古荒漠戈壁地区的西北气流.PSCF和CWT分析发现,蒙中、晋中、冀西南、豫北及鲁西是影响北京PM_(2.5)的主要潜在区域.而不同季节、不同输送路径对北京PM_(2.5)污染影响的差异显著,春季主要受来自蒙晋交界区域的短距离输送气流影响,潜在源区位于冀南、鲁西、豫东和皖西北地区,夏季污染轨迹来自鲁、晋地区,潜在源区为豫东北、皖北和苏北地区;秋季主要受来自冀南地区的短距离气流影响,潜在源区为晋北、冀南、豫北和鲁西地区,冬季主要受来自蒙古国中西部和蒙中地区的远距离输送气流影响,潜在源区主要在冀南、鲁西、豫北、晋和蒙西地区.
        The TrajStat software and data from global data assimilation system were used to calculate the 72 hour backward trajectories of air pollutants in Beijing from 2005 to 2016. The cluster analysis method was used to analyze the characteristics of the backward airflow trajectories and their effects on the concentration of particles over Beijing in the whole year and different seasons, combining with the daily concentration data of PM_(2.5), during the same period in Beijing. Meanwhile, Potential Source Contribution Factor Analysis(PSCF) and Concentration Weight Trajectory Analysis(CWT) combined with weight factors were utilized to calculate the potential source regions and the contribution of different source regions to Beijing particle concentration in different seasons during the study period. The results showed that, for the whole year, the air flow form northwest with the longest transmission distance, highest transmission height, and fastest transfer speed, occupying 59.97% of the total trajectories. The southeast airflow with the lowest transportation altitude, the shortest distance and the slowest moving speed accounted for 27.64%, and the lowest proportion of the northeast airflow was 12.40%, whose moving speed and transportation distance were between the first two. The main pollution trajectories came from Shandong and Hebei, followed by the northwestern airstreams from Russia, Mongolia, and Inner Mongolia's desert Gobi region. PSCF and CWT analysis found that central inner Mongolia, central Shanxi, southwest Guizhou, northern Henan and Shandong were the main potential areas affecting PM_(2.5) in Beijing.However, the differences in the impacts of different seasons and different backward trajectories on PM_(2.5) pollutions in Beijing were significant. In the spring, it was mainly affected by the short-distance transmission air flow from the border area of Mongolian and Shanxi.The potential source areas were located in southern Hebei, western Shandong, eastern Henan, and northwestern Anhui. The pollution trajectories in summer come from Shandong and Shanxi, and the potential source areas were northeastern Henan, northern Hebei, and northern Jiangsu. In the autumn, it was mainly affected by short-range air currents from southern Hebei. The potential source areas were northern Shanxi, southern Hebei, northern Henan, and western Shandong. In the winter, it was mainly affected by long-distance air currents from the central and western regions of Mongolia and central inner Mongolia. The potential source areas were mainly in southern Hebei,western Shandong, northern Henan, Shanxi, and western Inner Mongolia.
引文
[1]杨新兴,冯丽华,尉鹏.大气颗粒物PM2.5及其危害[J].前沿科学,2012,6(1):22-31.Yang X X,Feng L H,Yu P.Air particulate matter PM2.5 in Beijing and its harm[J].Frontier Science,2012,6(1):22-31.
    [2]薛文博,付飞,王金南,等.中国PM2.5跨区域传输特征数值模拟研究[J].中国环境科学,2014,34(6):1361-1368.Xue W B,Fu F,Wang J N,et al.Numerical study on the characteristics of regional transport of PM2.5 in China[J].China Environmental Science,2014,34(6):1361-1368.
    [3]王文丁,陈焕盛,吴其重,等.珠三角冬季PM2.5重污染区域输送特征数值模拟研究[J].环境科学学报,2016,36(8):2741-2751.Wang W D,Chen H S,Wu Q Z,et al.Numerical study of PM2.5regional transport over Pearl River Delta during a winter heavy haze event[J].Acta Scientiae Circumstantiae,2016,36(8):2741-2751.
    [4]黄侃.亚洲沙尘长途传输中的组分转化机理及中国典型城市的灰霾形成机制[D].上海:复旦大学,2010.Huang K.The transformation of aerosol components during the long-range transport of Asian dust and the formation mechanism of haze in mega-city,China[D].Fudan University,2010.
    [5]Prijith S S,Aloysius M,Mohan M.Relationship between wind speed and sea salt aerosol production:A new approach[J].Journal of Atmospheric and Solar-Terrestrial Physics,2014:108.
    [6]Prijith S S,Rajeev K,Bijoy V Thampi,et al.Multi-year observations of the spatial and vertical distribution of aerosols and the genesis of abnormal variations in aerosol loading over the Arabian Sea during Asian summer monsoon season[J].Journal of Atmospheric and Solar-Terrestrial Physics,2013,105-106.
    [7]孔珊珊,刘厚凤,陈义珍.基于后向轨迹模式的北京市PM2.5来源分布及传输特征探讨[J].中国环境管理,2017,9(1):86-90.Kong S S,Liu H F,Chen Y Z.Discussion on the source distribution and transmission characteristics of PM2.5 in Beijing based on Backward Trajectory Model[J].Chinese Journal of Environmental Management,2017,9(1):86-90.
    [8]王燕丽,薛文博,雷宇,等.京津冀区域PM2.5污染相互输送特征[J].环境科学,2017,38(12):4897-4904.Wang Y L,Xue W B,Lei Y,et al.Regional transport matrix study of PM2.5 in Jingjinji Region,2015[J].Environmental Science,2017,38(12):4897-4904.
    [9]任传斌,吴立新,张媛媛,等.北京城区PM2.5输送途径与潜在源区贡献的四季差异分析[J].中国环境科学,2016,36(9):2591-2598.Ren C B,Wu L X,Zhang Y Y,et al.Analyze to the seasonal differences of transport pathways and potential source-zones of Beijing Urban PM2.5[J].China Environmental Science,2016,36(9):2591-2598.
    [10]Draxler R R,Hess G D.An overview of the HYSPLIT_4 modeling system for trajectories,dispersion,and deposition[J].Australian Meteorological Magazine,1998,47:295-308.
    [11]Wang Y Q,Zhang X Y,Draxler R.TrajStat:GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J].Environmental Modeling and Software,2009,24(8):938-939.
    [12]王艳,柴发合,王永红,等.长江三角洲地区大气污染物输送规律研究[J].环境科学,2008,(5):1430-1435.Wang Y,Chai F H,Wang Y H,et al.Transport characteristics of air pollutants over the Yangtze Delta[J].Environmental Science,2008,(5):1430-1435.
    [13]马锋敏.北京及周边地区典型大气污染过程的数值模拟研究[D].南京:南京信息工程大学,2007.Ma F M.The Study on Numerical simulation of a persistent pollution event in Beijing and its surrounding regions[D].Nanjing:NanJing University of Information Science&Technology,2007.
    [14]HJ633-2012中华人民共和国国家环境保护标准环境空气质量指数(AQI)技术规定[S].HJ633-2012 Technical Regulation on Ambient Air Quality Index[S].
    [15]Ashbaugh L L,Malm W C,Sadeh W Z,et al.1985.A residence time probability analysis of sulfur concentrations at Grand Canyon National Park[J].Atmospheric Environment,19(8):1263-1270.
    [16]Zeng Y,Hopke P K.1989.A study of the sources of acid precipitation in Ontario,Canada[J].Atmospheric Environment,23(7):1499-1509.
    [17]Hopke P K,Gao N,Cheng M D.1993.Combining chemical and meteorological data to infer source areas of airborne pollutant[J].Chemometrics and Intelligent Laboratory Systems,19(2):187-199.
    [18]Xu X,Akhtar U S.2010.Identification of potential regional sources of atmospheric total gaseous mercury in Windsor,Ontario,Canada Using hybrid receptor modeling[J].Atmos Chem Phys,10:7073-7083.
    [19]Polissar A V,Hopke P K,Paatero P,et al.1999.The aerosol at Barrow,Alaska:long-term trends and source locations[J].Atmospheric Environment,33:2441-2458.
    [20]Polissar A V,Hopke P K,Harris J M.2001.Source regions for atmospheric aerosol measured at Barrow,Alaska[J].Environ Sci Technol,35:4214-4226.
    [21]Wang Y Q,Zhang X Y,Arimoto R.2006.The contribution from distant dust sources to the atmospheric particulate matter loading at Xi’an,China during spring[J].Science of the Total Environment,368:875-883.
    [22]Seibert P,Kromp-Kolb H,Baltensperger U,et al.Trajectory analysis of aerosol measurements at high alpine sites[J].Transport and Transformation of Pollutants in the Troposphere,1994:689-693.
    [23]Hsu Y K,Holsen T M,Hopke P K.Comparison of hybrid receptor models to locate PCB sources in Chicago[J].Atmospheric Environment,2003,37(4):545-562.
    [24]Jeong J I,Park R J.Winter monsoon variability and its impact on aerosol concentrations in East Asia[J].Environmental Pollution,2017:221.
    [25]俞会新,郭辉.环渤海区域PM2.5污染问题研究[J].时代金融,2018,(3):221-223.Yu H X,Guo H.Study on PM2.5 pollution in the Bohai Rim region[J].Times Finance,2018,(3):221-223.
    [26]蒋伊蓉,朱蓉,朱克云,等.京津冀地区重污染天气过程的污染气象条件数值模拟研究[J].环境科学学报,2015,35(9):2681-2692.Jiang Y R,Zhu R,Zhu K Y,et al.Numerical simulation on the air pollution potential in the severe air pollution episodes in BeijingTianjin-Hebei Region[J].Acta Scientiae Circumstantiae,2015,35(9):2681-2692.
    [27]陈朝晖,程水源,苏福庆,等.华北区域大气污染过程中天气型和输送路径分析[J].环境科学研究,2008,(1):17-21.Chen Z H,Cheng S Y,Su F Q,et al.Analysis of synoptic patterns and transports during regional atmospheric pollution process in North China[J].Research of Environmental Sciences,2008,(1):17-21.
    [28]王郭臣,王东启,陈振楼.北京冬季严重污染过程的PM2.5污染特征和输送路径及潜在源区[J].中国环境科学,2016,36(7):1931-1937.Wang G C,Wang D Q,Chen Z L.Characteristics and transportation pathways and potential sources of a severe PM2.5 episodes during winter in Beijing[J].China Environmental Science,2016,36(7):1931-1937.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700