强化龙葵富集镉根际促生菌的分离、筛选与鉴定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation, screening and identification of plant growth promoting rhizobacteria to enrich cadmium accumulation in Solanum nigrum L.
  • 作者:蒋淼 ; 张丹 ; 支月娥 ; 吾兰·恩特马克 ; 周培
  • 英文作者:JIANG Miao;ZHANG Dan;ZHI Yue-E;Wulan·Entemake;ZHOU Pei;School of Agriculture and Biology, Shanghai Jiao Tong University;
  • 关键词:龙葵 ; 根际促生菌 ; 土壤镉污染 ; 植物-微生物联合修复
  • 英文关键词:Solanum nigrum L.;;Plant growth promoting rhizobacteria(PGPR);;Soil cadmium pollution;;Plant-microbial remediation
  • 中文刊名:微生物学通报
  • 英文刊名:Microbiology China
  • 机构:上海交通大学农业与生物学院;
  • 出版日期:2019-01-28 14:59
  • 出版单位:微生物学通报
  • 年:2019
  • 期:09
  • 基金:国家重点研发计划(2016YFD0800803)~~
  • 语种:中文;
  • 页:127-136
  • 页数:10
  • CN:11-1996/Q
  • ISSN:0253-2654
  • 分类号:X172;X53
摘要
【背景】植物-微生物联合修复土壤重金属污染日渐兴起,获取与超富集植物高效互作的微生物是实现联合修复技术进步的关键。龙葵在镉农田污染修复中广泛应用。【目的】筛选可促进龙葵生长及富集镉的耐镉根际促生菌。【方法】从龙葵根际土分离耐镉菌株,筛选具有良好促生特性的菌株,水培试验考察镉胁迫下菌株对植物生长及镉富集能力的影响,确定可促进龙葵生长及富集镉的微生物菌株,通过生理生化特性和16S rRNA基因序列分析进行菌株的初步鉴定。【结果】分离得到NT1、AXY1、AW2和AW1四株强化龙葵富集镉促生菌,经鉴定分别为Lysinibacillus sp.、Beijerinckia fluminensis、Achromobacter animicus和Herbaspirillum huttiense。上述菌株均可有效促进龙葵生长,增加其株高和干物质积累,提高地上部镉富集量。其中,NT1可使株高、地上部干重分别增加31.33%和62.65%,AW2可使地上部镉富集量增加37.29%。【结论】筛选所得菌株可为提高植物修复效率提供实践依据,为研制田间施用生态功能菌剂做铺垫,用于农田镉污染的微生物-龙葵联合原位修复。
        [Background] Plant-microbial remediation becomes prevailing in the remediation of soil heavy metal pollution. The key to achieve this is to obtain microorganisms which can interact with hyperaccumulator effectively. Solanum nigrum L. is widely used in the remediation of cadmium pollution of farmland. [Objective] To screen cadmium tolerant plant growth promoting rhizobacteria(PGPR) which can promote the growth and cadmium accumulation of Solanum nigrum L. [Methods] Cadmium tolerant strains with good growth promoting characteristics were isolated and screened from rhizosphere soil of Solanum nigrum L. The effects of cadmium stress on plant growth and cadmium accumulation ability were investigated under hydroponic culture, and microorganism which can promote growth and cadmium accumulation of Solanum nigrum L. was determined. The strain was identified by its physiological and biochemical characteristics and the analysis of its 16 S rRNA gene sequence. [Results] Four PGPR strains, NT1, AXY1, AW2 and AW1, were isolated from Solanum nigrum L., which were identified as Lysinibacillus sp., Beijerinckia fluminensis, Achromobacter animicus and Herbaspirillum huttiense. The growth of Solanum nigrum L., was enhanced by four strains, as the increase of height, dry matter accumulation and the cadmium accumulation of the aboveground part. Strain NT1 increased height by 31.33%, and increased the dry weight of the aboveground part by 62.65%. Strain AW2 increased the cadmium accumulation by 37.29%. [Conclusion] Screening of strains can provide a practical basis when it comes to improving the efficiency of plant remediation. It can also help to prepare the ecologically functional bacteria and be used for the microorganism and Solanum nigrum L. combination in situ remediation in the cadmium polluted farmland.
引文
[1] Kirkham MB. Cadmium in plants on polluted soils:effects of soil factors, hyperaccumulation, and amendments[J]. Geoderma,2006, 137(1/2):19-32
    [2] Holmgren GGS, Meyer MW, Chaney RL, et al. Cadmium, lead,zinc, copper, and nickel in agricultural soils of the United States of America[J]. Journal of Environmental Quality, 1993, 22(2):335-348
    [3] Wang KR. Current status of cadmium pollution in farmland in China and its countermeasures[J]. Journal of Agro-Environment Science, 1997, 16(6):274-278(in Chinese)王凯荣.我国农田镉污染现状及其治理利用对策[J].农业环境保护, 1997, 16(6):274-278
    [4] Liu CD, Wang Q, Yu B, et al. Characteristics and control countermeasures of heavy metal pollution in farmland[J].Agricultural Technology Service, 2008, 25(7):118-119(in Chinese)刘传德,王强,于波,等.农田土壤重金属污染的特点和治理对策[J].农技服务, 2008, 25(7):118-119
    [5] Tang X, Li Q, Wu M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management,2016, 181:646-662
    [6] Wuana RA, Okieimen FE. Heavy metals in contaminated soils:a review of sources, chemistry, risks and best available strategies for remediation[J]. ISRN Ecology, 2011, 2011:402647
    [7] Zhang X, Zhou AG, Gan YQ, et al. Advances in bioremediation technologies of contaminated soils by heavy metal in metallic mines[J]. Environmental Science&Technology, 2010, 33(3):106-112(in Chinese)张溪,周爱国,甘义群,等.金属矿山土壤重金属污染生物修复研究进展[J].环境科学与技术, 2010, 33(3):106-112
    [8] Kumar PNAN, Dushenkov V, Motto H, et al. Phytoextraction:the use of plants to remove heavy metals from soils[J].Environmental Science&Technology, 1995, 29(5):1232-1238
    [9] Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals—concepts and applications[J]. Chemosphere, 2013, 91(7):869-881
    [10] Glick BR. Using soil bacteria to facilitate phytoremediation[J].Biotechnology Advances, 2010, 28(3):367-374
    [11] Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria[J]. Annual Review of Microbiology, 2009, 63:541-556
    [12] Ansari MI, Malik A. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater[J]. Bioresource Technology, 2007, 98(16):3149-3153
    [13] Nies DH. Microbial heavy-metal resistance[J]. Applied Microbiology and Biotechnology, 1999, 51(6):730-750
    [14] Roane TM, Kellogg ST. Characterization of bacterial communities in heavy metal contaminated soils[J]. Canadian Journal of Microbiology, 1996, 42(6):593-603
    [15] Niu ZX, Sun LN, Sun TH. Plant-microorganism combined remediation of heavy metals-contaminated soils:Its research progress[J]. Chinese Journal of Ecology, 2009, 28(11):2366-2373(in Chinese)牛之欣,孙丽娜,孙铁珩.重金属污染土壤的植物-微生物联合修复研究进展[J].生态学杂志, 2009, 28(11):2366-2373
    [16] Yang XE, Long XX, Ye HB, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species(Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259(1/2):181-189
    [17] Sun RL, Zhou QX, Jin CX. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator[J]. Plant and Soil, 2006, 285(1/2):125-134
    [18] Xu J, Sun JH, Du LG, et al. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum[J]. New Phytologist, 2012, 196(1):110-124
    [19] Liu LH, Liu SJ, Chen FM, et al. Effect of endophytic bacteria inoculation on cadmium uptake in Solanum nigrum L.[J]. Acta Scientiae Circumstantiae, 2013, 33(12):3368-3375(in Chinese)刘莉华,刘淑杰,陈福明,等.接种内生细菌对龙葵吸收积累镉的影响[J].环境科学学报, 2013, 33(12):3368-3375
    [20] Zhang YJ, Ma CC, Guo JK, et al. The effect of inoculating Burkholderia sp. D54 on cadmium uptake and accumulation in Sedum alfredii Hance[J]. Journal of Agro-Environment Science,2017, 36(3):449-457(in Chinese)张亚经,马成仓,郭军康,等.接种伯克氏菌D54对东南景天吸收富集Cd的影响[J].农业环境科学学报, 2017, 36(3):449-457
    [21] He LY, Li Y, Liu T, et al. Isolation and characterization of cadmium-resistant endophytic and rhizobacteria from Solanum nigrum in Orefield[J]. Journal of Ecology and Rural Environment,2011, 27(6):83-88(in Chinese)何琳燕,李娅,刘涛,等.龙葵根际和内生Cd抗性细菌的筛选及其生物学特性[J].生态与农村环境学报, 2011, 27(6):83-88
    [22] Wei X. Study on phosphate solubilizing characteristics of Bacillus megaterium NCT-2[D]. Shanghai:Master’s Thesis of Shanghai Jiao Tong University, 2015(in Chinese)卫星.巨大芽孢杆菌NCT-2的溶磷特性研究[D].上海:上海交通大学硕士学位论文, 2015
    [23] Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1):47-56
    [24] Zhao LF, Xu YJ, Chang JL, et al. Screening, resistance and growth-promoting effect of endophytic bacteria with ACC deaminase activity isolated from soybean nodules[J]. Acta Microbiologica Sinica, 2016, 56(6):1009-1021(in Chinese)赵龙飞,徐亚军,常佳丽,等.具ACC脱氨酶活性大豆根瘤内生菌的筛选、抗性及促生作用[J].微生物学报, 2016, 56(6):1009-1021
    [25] Loper JE, Schroth MN. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet[J].Phytopathology, 1986, 76(4):386-389
    [26] Gyaneshwar P, Kumar GN, Parekh LJ, et al. Role of soil microorganisms in improving P nutrition of plants[J]. Plant and Soil, 2002, 245(1):83-93
    [27] Glick BR, Todorovic B, Czarny J, et al. Promotion of plant growth by bacterial ACC deaminase[J]. Critical Reviews in Plant Sciences, 2007, 26(5/6):227-242
    [28] Pan YH, Wang HB, Gu ZP, et al. Accumulation and translocation of heavy metals by macrophytes[J]. Acta Ecologica Sinica, 2010,30(23):6430-6441(in Chinese)潘义宏,王宏镔,谷兆萍,等.大型水生植物对重金属的富集与转移[J].生态学报, 2010, 30(23):6430-6441
    [29] Vandamme P, Pot B, Gillis M, et al. Polyphasic taxonomy, a consensus approach to bacterial systematics[J]. Microbiological Reviews, 1996, 60(2):407-438
    [30] Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens[J]. Current Opinion in Microbiology, 1999, 2(3):299-305
    [31] Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant growth promoting rhizobacteria(PGPR):A review[J].Cogent Food&Agriculture, 2016, 2(1):1127500
    [32] Vessey JK. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant and Soil, 2003, 255(2):571-586
    [33] Martínez-Viveros O, Jorquera MA, Crowley DE, et al.Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria[J]. Journal of Soil Science and Plant Nutrition, 2010, 10(3):293-319
    [34] Burd GI, Dixon DG, Glick BR. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants[J]. Canadian Journal of Microbiology, 2000, 46(3):237-245
    [35] Wu S. Phytoremediation of Zn-Cd contaminated soil by intercropping system consisted of Sedum plumbizincicola and cash crops and post-treatment of the harvested plant biomass[D].Hangzhou:Master’s Thesis of Zhejiang A&F University, 2018(in Chinese)武帅.伴矿景天与经济作物间作修复锌镉复合污染土壤及其产后处理技术[D].杭州:浙江农林大学硕士学位论文,2018