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A B S T R A C T

With increasing concerns over climate change and the global consensus regarding low carbon growth, the
transition of resource-based regions has become urgent and challenging. We employ a Slacks-Based Measure
with windows analysis approach to estimate the carbon emissions efficiency and abatement potential of China's
provinces over the period of 2003–2016. A panel Tobit model is further employed to analyze the direct and
indirect effects of natural resource abundance on emissions efficiency. We find that: (1) There exists a negative
correlation between resource abundance and carbon emissions efficiency. The more abundant the resources, the
lower the emissions efficiency. (2) Although emissions efficiency and abatement potential are generally nega-
tively correlated, abatement potential also depends on the scale of the economy. (3) Resource dependence is
unfavourable for the rationalization and advancement of the industrial structure, which indirectly affects the
carbon emissions efficiency. These findings imply that resource-based regions should make the improvement of
emissions efficiency and the exploration of abatement potential as their top priority of actions for a low-carbon
transition, and promote the transformation of industrial structure in order to obtain a double dividend in sus-
tainable development and carbon emissions efficiency.

1. Introduction

Low carbon growth is widely regarded as the key way to resolve the
contradictory demands for economic growth and carbon emissions
mitigation. Finding ways to use resources including energy, more effi-
ciently, is a key requirement for low carbon growth. China, as the
world's largest carbon emitter, has urgency to increase emissions effi-
ciency, reduce carbon emissions and realize low-carbon economic de-
velopment. While China has formally promised the world in the
Intended Nationally Determined Contributions (INDC) to peak its
carbon emissions around 2030, it is actually trying to peak the emis-
sions earlier than this deadline. China has integrated policies pertaining
to the control of greenhouse gas emissions into the national economic
and social development strategy, such as to increase the share of non-

fossil fuels in primary energy consumption to around 20% (Xian et al.,
2018). In 2017, non-fossil fuels accounts for 13.6% of China's total
primary energy consumption (BP, 2018). In December 2016, the Na-
tional Energy Administration issued the “Revolutionary Strategy for
Energy Production and Consumption (2016–2030)” which states that
non-fossil energy will account for more than half of primary energy in
2050 (NDRC, 2016). The national unified carbon market that was of-
ficially launched in December 2017, could increase the abatement costs
of enterprises and reduce the demand for fossil fuels (Wang et al.,
2018).

Although resource-based regions have played a major role in pro-
moting the initial stages of industrialization, implementing low-carbon
transition is a severe challenge for resource-based regions whose eco-
nomic growth is often dominated by resource-intensive industries.
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Depending on resource advantages, resource-based regions have de-
veloped compatible industrial structures, and these have greatly ac-
celerated regional development (Shi, 2013). However, most of the in-
dustries in these regions are likely to be characterized by high energy
and emissions intensities (Feng et al., 2017). The abundance of the
natural resources leads to low prices of resources, which has led to high
extensive and inefficient energy consumption patterns and low emis-
sions efficiency (Adom and Adams, 2018; Yang et al., 2018). Further-
more, resource intensive industries tend to cluster in resource-based
regions and form industry agglomeration, eventually become the pillar
industries, which further leads to resource dependence. After agglom-
eration, non-resource intensive industries are closely attached to the
resource-intensive ones, and as a result the further resource dependence
worsens the carbon emissions efficiency in resource-based regions. As
the major outputs of resource-based regions, it is unrealistic to abandon
resource-intensive industries since a consequent growth plummet re-
sulting in serious social and economic problems.

However, where natural resource endowment is rich, resource de-
pendence is not necessarily high. Natural resource abundance includes
two related cases: rich endowment and high dependence. The natural
resources endowment refers to the quantity of natural resources that a
country or region can use for social and economic development; the
natural resources dependence refers to the role of resource-based in-
dustries in the development of regional economy (Sun and Ye, 2012;
Wu et al., 2018).

Given the difficulties in improving emissions efficiency and redu-
cing carbon emissions in resource-based regions, it is a timely and va-
luable exercise to investigate the relationship between resource abun-
dance, industrial structure and carbon emissions efficiency so as to offer
policy suggestions for low carbon transition in resource-based regions.
As the world's largest producer of coal and the largest emitter of carbon,
China provides an excellent case to study the topic and focusing on
China is important for the global community. The developing country
status and lagged economic development mean that China's lessons and
experience can be useful for other developing countries that rely on
natural resources.

In this paper, we apply the Slakes-Based Measure (SBM) with win-
dows analysis approach to estimate carbon emissions efficiency and
abatement potential of China's 30 provinces from 2003 to 2016, and
analyze the direct and indirect impact of resource abundance on carbon
emissions efficiency from two perspectives of resource dependence and
endowment. Our analysis is a useful extension to the existing literature
and can offer suggestions relating to low-carbon transition in China's
resource-based regions. The contributions of this paper are twofold: 1)
analysis of the impacts of natural resources abundance on carbon
emissions efficiency; and 2) analysis of the influence of natural resource
abundance on industrial structures, and then examination of the in-
direct effects on carbon emissions efficiency.

The paper proceeds as follow: Section 2 reviews the literature,
Section 3 discusses the influence mechanism of resource abundance on
emissions efficiency, Section 4 elaborates on the methodology and data,
and Section 5 presents the empirical results and discussion. The con-
cluding section provides policy recommendations and suggestions for
further research.

2. Literature review

This paper is closely related to three research strands in the litera-
ture. The first strand is “resource curse”, which is a popular topic in
resource economics. The second strand is carbon emissions efficiency
and abatement potential. The last strand is industrial structure which
connects closely with the first two strands. Therefore, the literature
review here deals with these three aspects.

For most countries and regions, having abundant resources hinder
long-run economic growth rather than promote it. The “resource curse”
has become a popular academic topic and has been discussed from

different perspectives using various theories and methods. Many studies
have empirically demonstrated that a large number of regions with
abundant natural resources, especially coal, oil and gas, are trapped in
the “resources curse” (Ahmed et al., 2016; Badeeb et al., 2017;
Brunnschweiler, 2008; Friedrichs and Inderwildi, 2013; Gerelmaa and
Kotani, 2016; Shao and Yang, 2014; Song et al., 2018)

Various approaches have been applied to evaluate the carbon
emissions efficiency and carbon abatement potentials. By applying a
data envelopment analysis (DEA) method, recent studies (Wang et al.,
2013; Xian et al., 2018; Zha et al., 2016) found that even if all elec-
tricity-generating units in each region were able to adopt the best
practices, the nationwide 18% intensity reduction target was not fea-
sible through improving technical efficiency in a short or medium term.
Owing to the diversity among the development patterns and natural
resource endowments in China's various regions, there is significant
difference in the carbon emissions performances at the provincial levels
(Chang et al., 2017; Yao et al., 2015). The remarkable imbalances in
economic development, technology gaps, policies, industrial structures
and energy consumption structures may explain the regional differ-
ences in carbon emissions efficiency (Lin and Du, 2015; Wang et al.,
2016; Yao et al., 2015).

Some researchers argued that rational industrial structure adjust-
ment could improve resource utilization efficiency (Zhang and Deng,
2010) and mitigate carbon emissions (Li et al., 2017; Shao et al., 2016).
There are many studies discussing how to adjust the industrial structure
so as to reduce carbon emissions, such as increasing the proportion of
tertiary industry in GDP (Zhang et al., 2014). Tian et al. (2014) pointed
out that different solutions should be used to control CO2 emissions in
regions which are at different stages in the process of industrial struc-
tural change.

The role of industrial structure in carbon emissions control may be
more important in resource-based regions than in other regions. Long-
term resource development has made industrial structures in resource-
based regions dominated by natural resource development and primary
processing (Sun and Ye, 2012). Such industrial structures will likely
lead to high emissions intensity in the resource-based regions. Fur-
thermore, low level industrial structures in the resource-based regions
have “lock-in effect” and “crowd-out effect”, which hinder the adjust-
ment and evolution of regional industrial structures (Li et al., 2019;
Morris et al., 2012). Such features make it difficult for resource-based
regions to achieve sustainable development in a low carbon world.
However, a few researches show potential of overcoming negative re-
source abundance effects. Balsalobre-Lorente et al. (2018) found that
countries with natural resources reduced their imports of dirty energy
resources, which had a positive effect on CO2 emissions reduction.

In summary, the existing related research provides a little study of
carbon emissions efficiency and abatement potential while considering
the natural resources abundance and industrial structure. In this paper,
by introducing two indicators which denote industrial structure and
employing the panel Tobit model, we analyze the direct and indirect
effects of resource abundance on emissions efficiency from the per-
spectives of resource dependence and endowment.

3. Influence mechanism of regional carbon emissions efficiency

This paper will analyze the impact of natural resources abundance
on carbon emissions efficiency from both direct and indirect channels.
On the one hand, abundant natural resources loosen the resource
constraints of enterprises, leading to the use of resources in a more
extensive and inefficient manner, which directly affects the carbon
emissions efficiency of resource-based regions. On the other hand,
abundant natural resources will also distort the industrial structure of
resource-based regions, making high emissions industries as pillar in-
dustries, which indirectly affects the carbon emissions efficiency of
resource-based regions.

K. Wang et al. Resources Policy 60 (2019) 203–214

204



3.1. Direct influence

The natural resources abundance causes relatively low resource
prices and thus make companies’ behavior in resource-based regions
different from those in other regions. Due to the convenience, avail-
ability and lower prices, companies located in resource-based regions
face a lower risks as well as a lower costs for resource reserves. Low
resource prices lead to a lower willingness to invest in resource-saving
technologies and equipment (Shi, 2014). Furthermore, resource-in-
tensive companies have to keep certain quantities of resource reserves
to guard against possible operational risks caused by resource
shortages, which places an extra pressure on companies’ financial
status. Overall, the extensive use of resources will inevitably lead to a
decline in carbon emissions efficiency.

3.2. Indirect influence

Abundance of natural resources not only leads to a rigid industrial
structures, but also reduces the emissions reductions derived from the
industrial structure dividend (Sun and Ye, 2012), which in turn affects
the carbon emissions efficiency. The industrial structures dominated by
a single resource sector, that is resource dependence, have squeezed the
development space of modern manufacturing. Thus resources-based
regions often fall into a rigid specialization trap. The tendency of “de-
industrialization” has caused the industrial structure of resource-based
regions to be in a state of distortion for a long time, thus they cannot
gain the “structural dividend” resulting from the optimization and up-
grading of industrial structures. However, the industrial structure is
shaped by market selection under the constraints of natural resources,
technologies, economic development stages and other factors within
the economic system. Each of these factors offer spontaneity, en-
dogeneity and rationality to some degree. Fig. 1 summarizes the direct
and indirect effects of natural resource abundance on carbon emissions
efficiency.

4. Methodology and data

Two distinctive methods are employed in this study. The Slacks-
based Measure (SBM) with window analysis approach estimates the
carbon emissions efficiency and abatement potential, while the panel
Tobit model investigates the influencing factors of carbon emissions
efficiency.

4.1. The SBM with window analysis approach

4.1.1. The Slacks-Based Measure
The SBM with window analysis approach is employed to estimate

the carbon emissions efficiency of China's 30 provinces (except for
Tibet) from 2003 to 2016. Under the framework of DEA, the non-radial
and non-oriented Slacks-Based Measure (SBM) can utilize input and
output slacks directly in producing an efficiency, it has been widely
applied to evaluate carbon emissions efficiency and abatement poten-
tial (Cecchini et al., 2018; Choi et al., 2012; Guo et al., 2017; Song
et al., 2013; Zhang et al., 2017, 2015; Zhang and Choi, 2013; Zhou
et al., 2006, 2013).

Taking China's 30 provinces as DMUj (j = 1,2…30), the SBM can be
written as follows:
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where the vectors x R y R,m g s1 and y Rb s2 represent inputs, de-
sirable outputs and undesirable outputs respectively. The vectors
s Rn and s Rb s2 correspond to excesses in inputs and undesirable
outputs respectively, while s Rg s1 expresses shortages in desirable
outputs. The objective value satisfies <0 * 1. Let an optimal solu-
tion of the above program be s s s( *, *, *, *)g b . Then, the DMUj is effi-
cient in the presence of undesirable outputs if and only if =* 1, i.e.,

= = =s s s* 0, * 0, and * 0g b . If the DMUj is inefficient, i.e., <* 1, it
can be improved and become efficient by deleting the excesses in inputs
and undesirable outputs, and augmenting the shortfalls in desirable
outputs by the following SBM-projection:
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In this paper, the excess in undesirable outputs means the carbon
abatement potential and is denoted as s *b , which is the quantity of
potential emissions reduction of DMUj when * is improved to 1.

Clearly, abatement potential measures the absolute reductions of
carbon emissions. It depends both on the emissions efficiency and the
scale of the economy. Some regions with high emissions efficiency, due

Fig. 1. Influence mechanism.
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to the large scale of the economy, may still have larger absolute
quantity of emissions reductions. Some regions with low emissions ef-
ficiencies, due to the smaller scale of the economy, may have smaller
absolute quantity of emissions reductions. Thus, SBM provides a scalar
measure ranging from 0 to 1 that encompasses all of the inefficiencies
that the model can identify.

In estimating carbon emissions efficiency based on SBM, we employ
labor, capital and energy to represent the inputs, GDP as a desirable
output, and the total amount of CO2 emissions as an undesirable output.
Specifically, labor is denoted by the number of employed persons, ca-
pital is estimated using the perpetual inventory method:

= +K K I(1 )it it it it1 (4)

energy is represented by the total energy consumption of each province,
and CO2 emissions are calculated with the energy emissions factors and
energy consumption.

4.1.2. The window analysis approach
Due to the advantages of analyzing a frontier shift between different

periods under a possible occurrence of a frontier crossover and in
handling panel data, the window analysis approach is used to evaluate
carbon emissions efficiencies over time and across different regions,
sectors and subjects (Al-Refaie et al., 2018; Cuccia et al., 2017; Lin and
Tan, 2017; Shawtari et al., 2015; Sueyoshi et al., 2013; Vlontzos and
Pardalos, 2017; Wang et al., 2013).

A window with n×w observations is denoted starting at time t
( t T1 ) with window width w ( w T t1 ), n= 30 for China's
30 provinces and the T= 14 for the 2003–2016 period. The selection of
the width of the window w is a key point in the window analysis ap-
proach. As is most commonly done in the literature, we set w = 3
(Halkos and Tzeremes, 2009; Vlontzos and Pardalos, 2017).

4.2. Panel Tobit model

Since the carbon emissions efficiency base on SBM is censored by 0
and 1, in this case, parameter estimates obtained by conventional re-
gression methods (e.g. OLS) are biased. Consistent estimates can be
obtained by Tobit model proposed by Tobin (1958), which is a special
case of the more general censored regression model (Baltagi and
Boozer, 1997; Maddala, 1987) and has been used in a very wide range
of applications characterized by censored observations. These are re-
cent examples (Bi et al., 2016; Brown et al., 2015; Kaya Samut and
Cafrı, 2016). We apply a random panel Tobit model to estimate the
possible determinants of carbon emissions efficiency. The model is
written as:

= + + +
+ +
+ + + + +
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ln *ln ln *ln
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where efficiency indicates carbon emissions efficiency of province i in
year t calculated by the SBM with window analysis approach. NRD
indicates natural resource dependence. The variables of rational and
advanced are two indicators used to characterize the development of the
industrial structure. PGDP represents the level of economic develop-
ment and is denoted by the GDP per capita measured by the price in
2003.

Xs are the control variable vectors. Besides the resource dependence

and industrial structure, government intervention, technology innova-
tion, energy price, the urbanization level and regulation are regarded as
the important factors that impact the carbon emissions efficiency in
many studies.

Because of the externality of carbon emissions, government inter-
vention plays an important role in improving carbon emissions effi-
ciency, and the fiscal policy is a common form of government inter-
vention through providing funds for improving of energy-saving and
emissions-reduction technologies, encouraging enterprises to eliminate
backward production capacity through incentives and subsidies, sup-
porting the development of clean energy (Price et al., 2005). Govern-
ment intervention (GOV) is denoted by the ratio of fiscal expenditure to
fiscal revenue.

The technology innovation is playing more and more important role
in improving carbon emissions efficiency and it is essential to meet
long-term emissions reduction targets (Dechezleprêtre et al., 2016;
Gallagher et al., 2006). The technology innovation (R&D) is expressed
as the ratio of R&D employees in all employed people.

When energy prices continue to rise, the cost effect will stimulate
energy conservation and emissions reduction (Fisher-Vanden et al.,
2004; McCollum et al., 2016), while speeding up the diffusion of en-
ergy-saving technologies, reducing energy consumption and improving
carbon emissions efficiency (Jacobsen, 2015). The change of energy
price (EPI) can be signified by purchasing price indices for industrial
producers of fuel and power.

In the process of urbanization, economic activities are centralized
and the energy has been consumed massively. On the other hand, the
scale effect and technique spill-over effect from the agglomeration of
economic activities will reduce the intensity of energy consumption,
improve energy consumption efficiency and carbon emissions efficiency
(Wang and Zhang, 2016). The level of urbanization (UR) is represented
by the proportion of urban resident population in each province.

As the climate change become more serious, governments will take
stricter environmental regulations, which exert extra costs on en-
terprises and force them to adopt emissions-reduction technologies and
clean energy. However, excessive cost may not be conducive to the
operation of enterprises and result in the decrease of carbon emissions
efficiency. We apply the energy-saving and emissions-reducing targets
for each province in “Five-Year Plans” as the indicator of environmental
regulation (Regulation).

4.3. Variable construction and data sources

Considering the regional economic landscape, resource abundance
and geographic features (Zhou et al., 2014), we divided China's 30
provinces into eight economy-geographic regions, i.e., the northeast,
north coast, east coast, south coast, the middle Yellow River, the middle
Yangtze River, southwest and northwest regions.

The measurement indicators of natural resources abundance can be
roughly divided into two categories: the resource dependence index and
the resource endowment index. Considering that this paper calculates
the carbon emissions efficiency from energy consumption, we choose
the output value proportion of the coal mining industry and the oil and
gas extraction industry in total industrial output value to represent the
degree of natural resource dependence (NRD). The larger the value, the
higher the degree of dependence. At the same time, in order to carry out
robustness tests, this paper also calculates other variables that can re-
present the natural resource dependence: the natural resource depen-
dence in employment (NRDL), which is represented by the employment
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proportion of the coal mining industry and the oil and gas exploration
industry in total industrial employment. Considering that this paper
mainly measures the efficiency and potential of carbon emissions, we
use fossil energy endowment (FEE) to represent resources endowment
index, which is represented by the ratio of production to consumption
of fossil fuels. The larger the ratio, the higher the degree of fossil energy
endowment.

We employ two indicators to characterize the improvement of in-
dustrial structure: rationalization and advancement, separately mea-
suring the allocation efficiency of production factors among industries
and the stages of industrial structures evolution (Sun and Ye, 2012).
Rationalization means high allocation efficiency and coupling quality,
in which economic development is enhanced and carbon emissions
efficiency is improved. Rational means rationalization index of in-
dustrial structure (Gan et al., 2011), which is shown in Eq. (6):

=
=

Rational Y
Y

ln Y
L

Y
L

/
i

n
i i

i1 (6)

where i = 1, 2, 3 indicate the primary, secondary and tertiary industries
respectively, and n = 3. Y and L indicate the industrial output and the
industrial employment respectively. When the economy is in an equi-
librium state, the production efficiency of each industry will converge
( =Y L/i i

Y
L and Rational= 0). The smaller the value of Rational, the

more reasonable the industrial structure. Advancement is represented by
the ratio of gross value of the tertiary industrial sector to that of the
secondary industrial sector, and higher value means more advanced
industrial structure. The development of tertiary industry plays an
important role in emissions reduction and improvement in carbon
emissions efficiency.

The annual data that was used to estimate the carbon emissions
efficiency all come from the China Statistical Yearbooks of 2004–2017.
Other data are collected from the China Statistical Yearbook, China
Industrial Statistical Yearbook, China Energy Statistical Yearbook, China
Population and Employment Statistics Yearbook, China Labor Statistics
Yearbook, and China Science and Technology Statistical Yearbook.

The values of Regulation for 2006–2010 are calculated based on the
energy consumption reduction target for each province during the 11th
Five-Year Plan period, that for 2011–2016 are from “Work Plan for
Controlling Greenhouse Gas Emissions in the 12th (and 13th) Five-Year
Plan”, and the values for 2003–2005 are set to 0 indicating no en-
vironmental regulation policies on carbon emissions in that period.
Except for environmental regulations, the values of the variables in the
model are all logarithms.

5. Empirical results

5.1. Carbon emissions efficiency and abatement potential

Based on the SBM with window analysis approach mentioned
above, we estimated the carbon emissions efficiency and abatement
potential for China's 30 provinces.

Table 1 shows the results for selected years. Firstly, the carbon
emissions efficiencies in almost all provinces improved from
2003–2016 but there were significant gaps among provinces. In 2016,
the carbon emissions efficiency in 10 provinces (Shandong, Beijing,
Tianjin, Ningxia, Qinghai, Hunan, Shanghai, Jiangsu, Guangdong and
Hainan) achieved efficient production activities (the value of carbon
emissions efficiency is 1), while the eight provinces of Xinjiang, Shanxi,
Inner Mongolia, Henan, Hebei, Gansu, Liaoning and Shaanxi had very
lower emissions efficiency (below 0.6). Secondly, there was regional
clustering in carbon emissions efficiency. The efficiency of carbon
emissions in the coastal regions was generally higher than that of the
central and western regions. Not surprisingly, the coal-rich Middle
Yellow River region and the Northeast region had the lowest emissions
efficiencies.

The abatement potential is the excess in carbon emissions when the
DMUi is inefficient and needs to be deleted as the carbon efficiency is
improved and the DMUi becomes efficient. Fig. 2 shows the aggregate
abatement potential over time in 30 provinces. We can see that, firstly,
there are distinct differences in the abatement potential among the
provinces. Over the 11th Five-Year Plan, 12th Five-Year Plan and in
2016, the provinces with the largest abatement potential were Shan-
dong, Shanxi and Inner Mongolia, and the average annual abatement
potential was 595 mt, 677 mt and 822 mt separately, while the smallest
abatement potential was only 1.28 mt, 1.17 mt and 0.1 Secondly, al-
though the carbon emissions for most of the provinces were improving,
the abatement potentials were increasing, especially in the high emis-
sions regions of Inner Mongolia, Shanxi, Hebei, Xinjiang, Liaoning,
Henan, Shaanxi. The emissions reduction resulting from efficiency im-
provements cannot offset increases in emissions caused by the expan-
sion of production activities (Choi et al., 2012; Zhang et al., 2016). This
is the key for China in achieving the target of carbon emissions peak.

While emissions efficiency and abatement potential are generally
negatively correlated, the eight regions are categorized into four dis-
tinct groups according to the relationship between emissions efficiency
and abatement potential over the 12th Five-Year Plan (See Fig. 3 for
details). The first group has low efficiency in emissions with high
abatement potential (LE-HP), including 11 provinces: Xinjiang, Inner

Table 1
Carbon emissions efficiency in China's 30 provinces (2004–2016).

Region 2004 2006 2008 2010 2012 2014 2016

Middle Yellow River Region 0.479 0.520 0.580 0.589 0.590 0.581 0.525
Shanxi 0.394 0.404 0.455 0.487 0.490 0.475 0.469
Inner Mongolia 0.466 0.530 0.575 0.579 0.542 0.674 0.496
Henan 0.536 0.582 0.661 0.652 0.671 0.574 0.543
Shaanxi 0.519 0.565 0.631 0.641 0.656 0.599 0.591
North Coast Region 0.677 0.711 0.764 0.776 0.781 0.831 0.886
Hebei 0.556 0.575 0.587 0.612 0.624 0.601 0.545
Shandong 0.689 0.646 0.637 0.615 0.615 0.766 1.000
Beijing 0.792 0.942 0.960 0.944 0.989 0.992 1.000
Tianjin 0.673 0.682 0.872 0.935 0.896 0.967 1.000
Northeast Region 0.497 0.553 0.607 0.621 0.663 0.669 0.643
Liaoning 0.478 0.538 0.587 0.631 0.671 0.619 0.571
Heilongjiang 0.495 0.526 0.576 0.625 0.653 0.637 0.605
Jilin 0.518 0.594 0.656 0.607 0.664 0.749 0.753
Northwest Region 0.679 0.642 0.681 0.675 0.698 0.671 0.756
Xinjiang 0.495 0.525 0.554 0.541 0.518 0.493 0.464
Gansu 0.450 0.485 0.546 0.585 0.595 0.567 0.560
Ningxia 0.769 0.559 0.624 0.611 0.754 0.624 1.000
Qinghai 1.000 1.000 1.000 0.964 0.928 1.000 1.000
Southwest Region 0.625 0.655 0.710 0.728 0.680 0.679 0.728
Guizhou 0.415 0.442 0.527 0.559 0.575 0.600 0.614
Guangxi 0.694 0.763 0.861 0.808 0.668 0.694 0.661
Sichuan 0.631 0.691 0.714 0.778 0.701 0.607 0.685
Yunnan 0.554 0.568 0.624 0.635 0.676 0.694 0.740
Chongqing 0.832 0.810 0.823 0.862 0.781 0.800 0.939
Middle Yangtze River Region 0.640 0.674 0.757 0.767 0.757 0.751 0.783
Anhui 0.597 0.651 0.692 0.717 0.722 0.689 0.673
Jiangxi 0.669 0.763 0.868 0.816 0.803 0.714 0.718
Hubei 0.613 0.618 0.722 0.757 0.701 0.681 0.743
Hunan 0.681 0.662 0.746 0.778 0.803 0.922 1.000
East Coast Region 0.796 0.844 0.876 0.930 0.878 0.818 0.975
Zhejiang 0.850 0.794 0.809 0.789 0.794 0.782 0.925
Shanghai 0.765 0.918 0.917 1.000 0.839 0.884 1.000
Jiangsu 0.774 0.819 0.902 1.000 1.000 0.787 1.000
South Coast Region 0.940 0.911 0.933 0.926 0.883 0.882 0.929
Fujian 0.833 0.829 0.855 0.779 0.699 0.694 0.786
Guangdong 1.000 0.953 1.000 1.000 1.000 0.993 1.000
Hainan 0.988 0.951 0.944 1.000 0.948 0.960 1.000
Average 0.658 0.680 0.731 0.744 0.733 0.728 0.769

1 When the carbon emissions efficiency is 1, there is no abatement potential.

K. Wang et al. Resources Policy 60 (2019) 203–214

207



Mongolia, Heilongjiang, Liaoning, Hebei, Shanxi, Shaanxi, Henan,
Hubei, Sichuan and Guizhou, accounting for 65% of the abatement
potential in the 12th Five-Year Plan. All of the coal abundant areas are
in this group. Reducing the carbon emissions from this group is crucial
for achieving the emissions reduction targets. The second group is low
efficiency but low potential regions (LE-LP): Gansu, Jilin, Yunnan, and
Guangxi. These provinces have relatively underdeveloped economies
and low carbon emissions efficiencies, but they have low fossil energy

endowment and relatively clean energy consumption structures. This
means that the total carbon emissions are low. Thus, there is little po-
tential for further carbon reduction even if efficiencies are improved.
The third group is high efficiency but with high potential (HE-HP):
Shandong, Jiangsu, Anhui, and Zhejiang. The four provinces have large-
scale economies and more sources of emissions, although the emissions
efficiency is high, the quantity of potential emissions reduction will still
be large. In 2016, the abatement potential in the four provinces was
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Fig. 3. The carbon emissions efficiency and potential of China's provinces in the 12th Five-Year Plan.
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dramatically reduced as a result of the improvements made in carbon
efficiencies. The last group is high efficiency with low potential (HE-
LP): Beijing, Shanghai, Tianjin, Chongqing, Guangdong, Fujian, Hunan,
Jiangxi, Qinghai, Ningxia, and Hainan. These are all successful in terms
of efficiency improvement and carbon reduction.

5.2. Influencing factors of carbon emissions efficiency

The panel Tobit regression results2 are shown in Table 2. From
column (1), it can be seen that the resource dependence (NRD) has a
significant negative effect on the carbon emissions efficiency. For every
1% increase in resource dependence, the carbon emissions efficiency
will decrease by about 0.04%. After the two industry structure in-
dicators were added to columns (2)–(3), and cross-terms of industrial
structure variables with resource dependence were added to columns
(4)–(6) and all control variables were further included in column (6),
the coefficients of resource dependence were still significantly negative.
However, the values of the coefficients of resource abundance sig-
nificantly increased in the regression models with cross-items, which is
in line with previous theoretical analyses.

The results in columns (2)-(6) show that the increase in the

rationalization and advancement of industrial structure will increase
carbon emissions efficiency,3 but the coefficient of advancement is no
longer significant in column (5). The cross-terms show that in the re-
gions with higher resource dependence, the advanced industrial struc-
ture fails to promote carbon emissions efficiency, and the rational in-
dustrial structure may not further reduce carbon emissions efficiency.

Economic development, however, can mitigate the negative effect
of natural resource abundance on emissions efficiency. The cross-term
coefficient of per capita GDP and its resource dependence is sig-
nificantly positive in all regressions, indicating that higher levels of
economic development can mitigate the negative impact of resource
dependence on emissions efficiency.

5.3. Robustness test

In Table 3, we turn to using the NRDL to verify the reliability of the
previous results. The regression results are basically the same as the
previous findings. Specifically, in the absence of cross-terms and control
variables, the emissions efficiency dropped by 0.03% for each 1% in-
crease in resource dependence in columns (1)-(3). After adding the
cross-terms and control variables, for each 1% increase in resource
dependence in columns (4)-(6), the emissions efficiency will decrease
by approximately 0.30%. The magnitude of the influence is similar to
that of Table 2. The results of industrial structure variables and all cross
terms are also basically the same, but the significance level of some
coefficients declines.

Table 2
Analysis of influencing factors of carbon emissions efficiency.

(1) (2) (3) (4) (5) (6)
Dependent variable lnefficiency

lnNRD −0.041*** −0.029*** −0.042*** −0.117** −0.249*** −0.277***

(0.004) (0.004) (0.003) (0.047) (0.054) (0.050)
lnrational −0.032*** −0.027** −0.029**

(0.006) (0.012) (0.014)
lnadvanced 0.072*** 0.058 0.094**

(0.020) (0.039) (0.047)
lnNRD*lnrational 0.004* −0.002

(0.002) (0.003)
lnNRD*lnadvanced −0.011 −0.013

(0.009) (0.012)
lnPGDP 0.165*** 0.185*** 0.179***

(0.020) (0.021) (0.027)
lnNRD*lnPGDP 0.013*** 0.023*** 0.027***

(0.005) (0.005) (0.005)
lnGOV 0.107***

(0.025)
lnR&D 0.039**

(0.017)
lnEPI 0.143**

(0.067)
lnUR −0.028

(0.040)
Regulation 0.985**

(0.493)
_cons −0.488*** −0.569*** −0.506*** −2.113*** −2.272*** −2.844***

(0.015) (0.017) (0.015) (0.196) (0.210) (0.493)
sigma_u 0.172*** 0.147*** 0.152*** 0.162*** 0.148*** 0.170***

(0.007) (0.007) (0.006) (0.006) (0.006) (0.007)
sigma_e 0.120*** 0.117*** 0.118*** 0.105*** 0.107*** 0.105***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
rho 0.672 0.613 0.625 0.705 0.655 0.723
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000
Prob >= chibar2 0.000 0.000 0.000 0.000 0.000 0.000
n 420 420 420 420 420 420

Note: Standard errors are shown in parentheses.
***, **, * denote the statistical significance at 1%, 5% and 10% separately.

2 Before running the panel Tobit model, we conducted the correlation analysis
for independent variables and the test result showed that there is no multi-
collinearity. We conducted fixed effect panel data model but did not find sig-
nificant difference of results from the panel Tobit model. The results are
available upon request. Since the literature shows that panel Tobit model is
more efficiency than the fixed effect model for data used in this paper, we
conducted our analysis based on the results of panel Tobit model.

3 According to equation (7), the smaller the value of Rational, the more rea-
sonable the industrial structure.
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Natural resource abundance has a certain correlation with natural
resource dependence. However, where natural resources are abundant,
natural resource dependence is not necessarily high. The natural re-
sources abundance refers to the quantity of natural resources that a
country or region can use for social and economic development; the
natural resources dependence refers to the role of resource-based in-
dustries in the development of regional economy (Sun and Ye, 2012;
Wu et al., 2018). To distinguish the effect of resource endowment to
that of the resource dependence, we use FEE (fossil energy endowment)
as the main dependent variable, which is the ratio of production to
consumption of fossil fuels to measure the level of resource endowment.

From the results in columns (1) to (3) in Table 4, it can be seen that
resource endowment have a significant negative correlation with
carbon emissions efficiency. For each 1% increase in resource endow-
ment, the emissions efficiency will decrease by about 0.12%. In addi-
tion, similar to the previous results, the increase in the rationalization
and advancement of the industrial structure will improve the carbon
emissions efficiency. When adding the cross-terms of the industrial
structure variable and resource endowment in columns (4)-(6), it can be
seen that the distortion of resource endowment to industrial structure is
not as serious as that of resource dependence.

5.4. Test of control variables effects

As shown in Tables 2–4, the coefficients of GOV are significantly
positive since fiscal expenditure can finance the improvement of

energy-saving and abatement technologies, and encouraging en-
terprises to eliminate backward production capacity. As in the litera-
ture, the role of R&D in improving carbon emissions efficiency is sig-
nificant. The impact of energy prices on carbon emissions efficiency is
significantly positive because the rise of energy prices will force en-
terprises to introduce energy-saving technologies or reduce energy
consumption. The coefficient of urbanization is negative, but not sig-
nificant in Tables 2 and 3, and weakly significant in Table 4. The reason
could be that the economic activities are centralized and the energy has
been consumed massively in the process of urbanization but the scale
effect and technique spill-over effect cannot be reflected in short-term.
The significant effect of environmental regulation on carbon emissions
efficiency suggest that the energy-saving and emissions-reduction target
is an effective tool for controlling emissions.

5.5. Medium-term and long-term effects

The effect of medium-run and long-run are indeed important to the
analysis of the impact of natural resource abundance on carbon emis-
sions efficiency. According to the method in the previous studies (Arin
and Braunfels, 2018; Kneller et al., 1999; Wu et al., 2018), this study
further carries out the panel Tobit model with 5-year moving average
data to examine the medium-term effect of natural resource abundance
and industrial structure on carbon emissions efficiency and carries out
the Tobit model to analyze long-term effect with the cross-sectional
data of 14-year (2013–2016) averages.

Table 3
Analysis of the effects of resource dependence and industrial structure on carbon emissions efficiency.

(1) (2) (3) (4) (5) (6)
Dependent variable lnefficiency

lnNRDL −0.029*** −0.026*** −0.025*** −0.256*** −0.266*** −0.330***

(0.003) (0.003) (0.004) (0.051) (0.054) (0.057)
lnrational −0.052*** −0.004 −0.019

(0.005) (0.014) (0.013)
lnadvanced 0.057*** 0.005 −0.004

(0.020) (0.047) (0.054)
lnNRDL*lnrational 0.006*** 0.003

(0.002) (0.002)
lnNRDL*lnadvanced　 −0.017** −0.016

(0.009) (0.010)
lnPGDP 0.177*** 0.200*** 0.198***

(0.024) (0.022) (0.029)
lnNRDL*lnPGDP 0.024*** 0.024*** 0.031***

(0.005) (0.005) (0.005)
lnGOV 0.074***

(0.025)
lnR&D 0.029

(0.018)
lnEPI 0.075

(0.069)
lnUR −0.033

(0.040)
Regulation 0.982***

(0.381)
_cons −0.505*** −0.587*** −0.482*** −2.259*** −2.429*** −2.804***

(0.016) (0.018) (0.017) (0.229) (0.233) (0.502)
sigma_u 0.178*** 0.162*** 0.177*** 0.135*** 0.140*** 0.161***

(0.008) (0.011) (0.007) (0.006) (0.006) (0.008)
sigma_e 0.121*** 0.118*** 0.119*** 0.106*** 0.107*** 0.105***

(0.005) (0.004) (0.004) (0.004) (0.004) (0.004)
rho 0.684 0.653 0.687 0.620 0.629 0.700
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000
Prob >= chibar2 0.000 0.000 0.000 0.000 0.000 0.000
n 420 420 420 420 420 420

Note: Standard errors are shown in parentheses.
***, **, * denote the statistical significance at 1%, 5% and 10% separately.
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Tables 5 and 6 show that the impacts of resource dependence on
carbon emissions efficiency keep unchanged and are still significant
negative in both the medium-term and the long-term.4 Similar to the
results in the models with the annual data, the rationalization and
advanced of industrial structure promote the carbon emissions effi-
ciency in the medium-term and long-term (see column (2)–(3) in Tables
5 and 6). In the case of introducing cross-items, the positive effect of
rationalization is significantly weakened, and the coefficients of cross-
items further show that in the resource dependence regions, even the
development of industrial structure towards rational and advanced still
cannot improve carbon emissions efficiency (see column (4)–(6) in
Tables 5 and 6).

In the long run, the resources dependence of economic development
in resource-based regions will inevitably lead to “lock-in effect”, which
hinders the adjustment and evolution of regional industrial structures.
The longer this development model is maintained, the higher resource
dependence will be and the greater negative impact on carbon emis-
sions efficiency will be. Even when resources are exhausted, the
transformation of development model are still very difficult due to the
lack of alternative industries.

For the control variables, the coefficients of economic development,
the government intervention, the technology innovation and the energy
price are consistent with those in the models with the annual data

(short run effect). The coefficient of urbanization become significantly
positive from non-significant, suggesting that although the impact of
urbanization on carbon emissions efficiency is unclear in the short and
medium-term, in the long run, the effect agglomeration and technology
spillover of urbanization significantly improves carbon emissions effi-
ciency.

It needs to be noticed that the coefficient of energy-saving and
emissions-reduction target is significantly negative in the long-term
model, while it is non-significant in the medium-term model and is
significantly negative in the models with annual data. Due to the fiscal
decentralization system, the interests between the China's central and
local governments are not entirely consistent and the pursuit of rapid
economic growth is the primary objective of local governments for a
long time. Under the constraints of energy saving and emissions re-
duction targets, local governments are more likely to control current
energy consumption through some government interventions and re-
sulting in higher carbon emissions efficiency in the short term.
However, if the target constraints cannot be translated into effective
environmental regulations to promote innovation and industrial struc-
ture upgrading, they cannot continuously and effectively improve
carbon emissions efficiency in the long run.

In summary, the empirical analysis shows that rationalization and
advancement of the industrial structure improve the carbon emissions
efficiency in different time horizon. However, the significantly negative
coefficients of resource abundance in all models and the coefficients of
interaction-terms all show that higher resource dependence not only
hinders the improvement of carbon emissions efficiency directly but
also affects the carbon emissions efficiency by distorting the industrial
structure and further exacerbates inefficiency.

Table 4
Analysis of the effects of resource endowments and industrial structure on carbon emissions efficiency.

(1) (2) (3) (4) (5) (6)
Dependent variable lnefficiency

LnFEE −0.117*** −0.117*** −0.121*** −0.289** −0.406*** −0.244**

(0.013) (0.012) (0.014) (0.115) (0.139) (0.120)
lnrational −0.016*** −0.020** −0.009

(0.006) (0.009) (0.010)
lnadvanced 0.110*** 0.064** 0.081***

(0.019) (0.028) (0.031)
lnFEE*lnrational 0.009 0.025***

(0.008) (0.009)
lnFEE*lnadvanced −0.035 0.035

(0.023) (0.029)
lnPGDP 0.115*** 0.117*** 0.118***

(0.012) (0.011) (0.023)
lnFEE *lnPGDP 0.023** 0.035*** 0.025**

(0.012) (0.014) (0.012)
lnGOV −0.002

(0.024)
lnR&D 0.025

(0.017)
lnEPI 0.092

(0.068)
lnUR −0.081**

(0.040)
Regulation 0.850**

(0.376)
_cons −0.452*** −0.485*** −0.431*** −1.578*** −1.537*** −1.951**

(0.012) (0.017) (0.010) (0.113) (0.112) (0.490)
sigma_u 0.151*** 0.149*** 0.155*** 0.154*** 0.147*** 0.148***

(0.007) (0.007) (0.007) (0.006) (0.006) (0.006)
sigma_e 0.116*** 0.116*** 0.115*** 0.107*** 0.107*** 0.104***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
rho 0.630 0.624 0.644 0.677 0.654 0.670
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000
Prob >= chibar2 0.000 0.000 0.000 0.000 0.000 0.000
n 420 420 420 420 420 420

Note: Standard errors are shown in parentheses.
***, **, * denote the statistical significance at 1%, 5% and 10% separately.

4 We also examine the medium-term and long-term effect with the variable of
resource dependence in employment (NRDL) and the fossil energy endowment
(FEE). The results are consistent with that in the Tables 5 and 6 except the
coefficients of FEE become less significant in the long-term effect model with
the cross-items.
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Table 5
Middle-term analysis of influencing factors of carbon emissions efficiency.

(1) (2) (3) (4) (5) (6)
Dependent variable lnefficiency

lnNRD −0.014*** −0.016*** −0.012*** −0.237** −0.266*** −0.402***

(0.003) (0.003) (0.003) (0.047) (0.045) (0.040)
lnrational −0.011*** −0.003 0.071***

(0.004) (0.010) (0.011)
lnadvanced 0.134*** 0.080** 0.175***

(0.012) (0.033) (0.036)
lnNRD*lnrational 0.009*** 0.019***

(0.002) (0.002)
lnNRD*lnadvanced 0.002 −0.006

(0.008) (0.009)
lnPGDP 0.152*** 0.168*** 0.294***

(0.020) (0.017) (0.024)
lnNRD*lnPGDP 0.026*** 0.028*** 0.043***

(0.005) (0.004) (0.004)
lnGOV 0.090***

(0.017)
lnR&D 0.044***

(0.011)
lnEPI 0.586***

(0.107)
lnUR −0.014

(0.048)
Regulation 0.005

(0.014)
_cons −0.355*** −0.386*** −0.391** −1.839*** −1.937*** −5.756***

(0.013) (0.016) (0.011) (0.193) (0.176) (0.661)
sigma_u 0.196*** 0.134*** 0.130*** 0.193*** 0.195*** 0.142***

(0.006) (0.004) (0.003) (0.006) (0.005) (0.004)
sigma_e 0.078*** 0.070*** 0.067*** 0.068*** 0.065*** 0.054***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.002)
rho 0.864 0.788 0.791 0.889 0.899 0.873
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000
Prob >= chibar2 0.000 0.000 0.000 0.000 0.000 0.000
n 300 300 300 300 300 300

Note: Standard errors are shown in parentheses.
***, **, * denote the statistical significance at 1%, 5% and 10% separately.

Table 6
Long-term analysis of influencing factors of carbon emissions efficiency.

(1) (2) (3) (4) (5) (6)
Dependent variable lnefficiency

lnNRD −0.071*** −0.068*** −0.064*** −0.856** −0.751*** −0.594**

(0.018) (0.018) (0.017) (0.327) (0.255) (0.247)
lnrational −0.051** 0.019 0.188**

(0.022) (0.040) (0.069)
lnadvanced 0.173*** −0.074 0.455**

(0.062) (0.195) (0.217)
lnNRD*lnrational 0.013 0.018

(0.008) (0.015)
lnNRD*lnadvanced −0.052 0.075

(0.045) (0.077)
lnPGDP 0.383*** 0.360*** 0.218

(0.127) (0.102) (0.132)
lnNRD*lnPGDP 0.081** 0.068*** 0.059**

(0.032) (0.024) (0.026)
lnGOV 0.315***

(0.098)
lnR&D 0.229***

(0.064)
lnUR 0.842**

(0.352)
Regulation −0.660***

(0.137)
_cons −0.606*** −0.711*** −0.566** −4.384*** −4.184*** −3.134*

(0.077) (0.090) (0.076) (1.270) (1.046) (1.582)
n 30 30 30 30 30 30

Note: Standard errors are shown in parentheses.
***, **, * denote the statistical significance at 1%, 5% and 10% separately.
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6. Conclusion and policy implications

Given China's ongoing efforts implement a national emission trading
scheme, investigating potential and ways to achieve low carbon tran-
sition are common challenges for all regions and enterprises. These
challenges are particular important for the resource-based regions, in
which resource-intensive industries are both the pillar and leading in-
dustries. With the continuous strengthening of global climate govern-
ance, the low-carbon transition of resource-based regions is particularly
imperative and will become a new obstacle to the future sustainable
development of resource based regions.

This paper uses SBM with windows analysis approach to estimate
carbon emissions efficiency and abatement potential for China's 30
provinces from 2003 to 2016. The panel Tobit model is further em-
ployed to analyze the direct and indirect effects of resource abundance
on emissions efficiency. The paper finds that : (1) The natural resource
abundance in the middle Yellow River regions means lower carbon
emissions efficiency and larger abatement potential. (2) From the direct
effect, there is a negative correlation between resource abundance and
carbon emissions efficiency. The more abundant the resources in a re-
gion, the lower the emissions efficiency, and the larger the abatement
potential. (3) From the indirect effect, resource abundance is not con-
ducive to the rationalization and advancement of the industrial struc-
ture, and indirectly affects the carbon emissions efficiency, which de-
creases the dividend of industrial structure.

Given the continuous advancement of climate change efforts, re-
source-based regions must regard the industrial structure transforma-
tion as an important development strategy in the medium and long
term, otherwise which may become a huge challenge for their sus-
tainable development. These regions should take the low-carbon tran-
sition as an important factor in their long-term development strategy.
Therefore, the conclusions of this paper have important implications to
resource-based regions in China, which is applicable to other countries,
including:

(1) The resource-based regions should take improving emissions effi-
ciency and tapping abatement potentials as the top priority of ac-
tions for low-carbon transition. Resource-based regions should set
strict criteria of entrance of new projects for carbon emissions ef-
ficiency when conducting environmental impact assessments.

(2) Resource-based regions need to promote the rationalization, and
advancement of industrial structures, so as to obtain a double di-
vidend in sustainable development and carbon emissions efficiency.
Resource-based regions could gradually phase out outdated in-
dustries and/or retrofit those resource intensive industries with new
abatement technologies.

(3) The central government should further accelerate the construction
of the carbon market, so that the resource-based regions can sell the
allowances saved through technological improvement, thereby
obtain financial compensation for their abatement investment. The
government could also reserve fund from auction of carbon allow-
ances to support industry upgrading and development of low
carbon emissions.

The current study at the provincial level has a limitation in that the
spatial distribution of natural resources is extremely uneven within any
given province. Therefore, the impact of resource dependence on
carbon emissions efficiency needs to be further decomposed geo-
graphically so that the relationship can be described more accurately.
In future, we will employ panel data at the city level for empirical
analysis.
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