高压脉冲电场对POD活性及各级结构的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压脉冲电场(Pulsed electric field,简称PEF)是非热食品处理技术中最具有发展前景的技术,也是近年来国内外食品加工行业研究的热点问题之一。目前较多的研究集中在杀菌的机理和动力学方面,高压脉冲电场对酶影响的相关研究开展的较少,酶在脉冲电场作用下的活性变化机理也尚不清楚。研究者只是在对酶失活的比率进行测试时提出了几种失活可能性的假说,并没有得到相关的论证和深入的研究。
     本研究使用大连理工大学设计的高压脉冲系统,选取热稳定性较高的辣根过氧化物酶(POD)为目标酶,从理论和实验两方面对高压脉冲电场处理条件下酶失活和酶构象的改变进行了系统的研究,并应用计算机分子模拟技术形象地模拟了酶三级构象的改变。从而对先前进行的有关酶失活动力学的研究进行了验证。
     1、本实验使用的高压脉冲电场设备,电压范围0~22kV;脉冲宽度5~20μs;采用co-field连续处理室,流速范围5~100ml/min;脉冲周期10~1KHz;单极脉冲;波型为方波。
     2、PEF处理可以钝化POD活力:方波条件下,脉冲宽度为17μs,PEF电场强度对POD酶失活有显著影响(P<0.01),随脉冲电场强度(0 kV/cm~20kV/cm)的增强,POD酶活钝化效果增强。动力学方程组,(?),能够描述高压脉冲电场作用与酶失活的关系,且酶失活过程存在有临界场强E_c(10.12±0.34 kV/cm)。
     3、尺寸排阻色谱分析表明:高压脉冲电场条件下,POD的蛋白质肽链没有发生断裂,即POD的一级结构未发生明显改变。
     4、红外光谱分析表明:高压脉冲电场条件下,POD的二级结构单元(α-螺旋、β-折叠、β-转角和无规卷曲)随着电场强度的增加,呈非单调型变化。并且高压脉冲电场的作用,使POD二级结构单元中的β-转角和无规卷曲向α-螺旋和β-折叠转化。
     5、荧光光谱分析表明:高压脉冲电场处理POD可以使其荧光强度产生不同程度的下降,从而改变了POD的局部三级构象,并且电场强度越大,作用越明显。研究还表明,荧光淬灭过程存在与酶失活过程相同的临界场强E_c,说明酶三级构象改变与酶活改变关系密切。
     6、计算机分子模拟分析形象地验证表明了:高压脉冲电场条件未改变POD分子片段的整体结构,但改变其部分基团的构象。
Pulsed electric field (PEF) is a very promising non-thermal food processing technology, and it has become the hot spot of food industry recently. Currently most researches focused on the mechanism and kinetics of microbial inactivation, however, few researches related to the effects of PEF on enzymes, and the mechanism of enzyme inactivation under PEF is still unclear. Several hypotheses about the inactivation of enzyme were proposed but these hypotheses still has not been proved yet.
     PEF treatment was performed by using a laboratory scale pulse generator system (designed by Dalian University of Technology). The relative residual activity of commercial enzymes of horseradish peroxidase (POD) which is thermal resistance was investigated. The inactivation and conformational transitions of POD by PEF were studied systematically from theories and experiments. The change in tertiary structure of POD under PEF also was studied by computer molecular imitation. By doing so the enzyme inactivation kinetics studied previously was verified.
     1、The PEF-treatment system consisted of a square wave generator, a co-field tubular treatment chamber and a cooling system. The voltage, pulse duration and pulse frequency were available from 0 to 22 kV, 5 to 20μs and 10 to 1000Hz respectively.
     2、The activity of POD declined significantly after PEF treatment: the parameters in the experiment included square wave pulses of 17μs, electric field strength (0 kV/cm~20 kV/cm). The results showed that the inactivation of POD was significantly (P<0.01).And with the increasing of electric field strength, the inactivation effect of POD enhanced.
     The kinetic equation (?) may describe therelationship between electric field strength and relative activities of POD. The kinetic equation showed that the critical electric strength (E_c) of POD existed, which was 10.12±0.34 kV/cm.
     3、Measured by size exclusion chromatography, the result showed that polypeptide chain of POD was not fractured by PEF treatment which meant the primary structure of POD did not change after PEF treatment.
     4、Measured by infrared spectrophometry the result showed that the secondary structure units of POD, including a-helix,β-strands, P-turn and random coil, presented nonmonotonic variation, with the increase of electric strength theβ-turn and random coil were transformed into a-helix andβ-strands.
     5、Measured by spectrofluorimetry, the result showed that the fluorescence intensity of POD declined in different degree after being treated by pulsed electric fields. And then it led to local variations on tertiary structure of POD. The higher the electric field intensity, the more obvious the effect is. The result also showed that just as in the process of inactivation, there was a same critical electric strength (E_c) during the fluorescence quenching which meant the relationship between the tertiary structure variation and the inactivation of POD was close.
     6、Computer molecular imitation vividly verified and showed that the whole molecular structure of POD did not change, but part of the groups of POD changed under PEF treatments.
引文
[1]王黎明,史梓男,关志成,等.脉冲电场非热杀菌效果分析[J].高电压技术,2005,31(2):63-68.
    
    [2]王宏,李艳.食品非热杀菌技术[J].粮食与油脂,2005(5):11-15.
    
    [3]Barsotti L., Merle P, Cheftel J. C. Food processing by PEF. Food Rev Int, 1999,15(2):163-180
    
    [4]Zhang Q. H.,Qiu X., Sharma S. K. Recent development in pulsed electric field processing.Ix.National Food Processors Association. New Technolgies Yearbook.1997,31-42.
    
    [5]Lado B. H., Yousef A. E. Alternative food-processing technolgies: efficacy andmechanisms.Microbes and Infection, 2002 (4): 433-440
    
    [6]Gilliland,S.E. & Speck,M.L(1967).Mechanism of the bactericidal action produced byelectrohydraulic shock. Appl.Microbiol.,15,1038-1004.
    
    [7]Tsong T. Y, Astunian R. D. Absorption and Conversion of Electric Field Energy by membraneBound ATPases. Bioelectrochem. B1986(15):457-476
    
    [8]Castro, A. J., Swanson, B. G., Barbosa-Canovas, G. V., & Meyer, R.(1994). Pulsed electricfield modification of milk alkaline phosphatase activity. PhD thesis, Washington State University.
    
    [9]Vega-Mercado, H., Powers, J. R., Barbosa-Canovas, G. V.,& Swanson,B. G.(1995). Plasmininactivation with pulsed electric fields. Journal of Food Sci. 60,1143-1146.
    
    [10]Vega-Mercado, H., Powers, J. R., Barbosa-Canovas, G. V., Swanson,B. G., & Luedecke, L.(1995). Inactivation of a protease from Pseudomonas fluorescens M3/6 using high voltage pulsedelectricfields. In Proceedings IFT Annual Meeting, p. 267, California,USA..
    
    [11]Vega-Mercado, H., Powers, J. R., Martin-Belloso, O., Luedecke,L., Barbosa-Canovas, G. V.,& Swanson, B. G. (1997). Effect of pulsed electric fields on the susceptibility of proteins toproteolysis and the inactivation of an extracellular proteasefrom Pseudomonas fluorescens M3/6.In R. Jowitt, ed. Engineering& Food at ICEF 7: Part I (pp. C73-C76). Sheffield Academic PressLtd, Sheffield, UK.
    
    [12]Ho, S. Y., Mittal, G. S., & Cross, J. D. (1997). Effects of high fieldelectric pulses on theactivity of selected enzymes. J. Food Eng.,31,69-84.
    
    [13]Giner, J., Gimeno, V., Ortega, M., Barbosa-Canovas, G. V, & Martin-Belloso, O. (1999).??Inhibition of peach polyphenoloxidase by pulsed electric fields. In Proceedings of EuropeanConference on Emerging Food Science and Nutrition, p.109, Tampere,Finland, 22-24 November.
    
    [14]Giner, J., Gimeno, V., Ortega, M., Barbosa-Canovas, G. V., & Martin-Belloso, O. (1999).Inhibition of peach polyphenoloxidase by pulsed electric fields. In Proceedings of EuropeanConference on Emerging Food Science and Nutrition, p.109, Tampere,Finland, 22-24 November.
    
    [15]Yeom, H. W., Zhang, Q. H., & Dunne, C. P. (1999). Inactivation of papain by pulsedelectric fields in a continuous system. Food Chemistry, 67,53-59.
    
    [16]Yeom H. W., Streaker C. B., Zhang Q. H., et al. Effects of PEF on the activities ofmicroorganisms and pectin methyl esterase in orange juice. Journal of Food Science, 2000,65 (8):1359-1363
    
    [17]Yeom, H. W., Streaker, C. B., Zhang, Q. H., & Min, D. B. (2000).Effects of pulsedelectricfields on the quality of orange juice and comparison with heat pasteurisation. Journal ofAgricultural and Food Chemistry, 48,4597-4605.
    
    [18]Yang, Si-Quan Li & Q.Howard Zhang(2004).Effect of Pulsed Electric Field on the Activityand Structure of Pepsin. Agricultural and Food Chemistry, 52,7400-7406.
    
    [19]Kui Zhong, Xiaosong Hu, Guanghua Zhao, Fang Chen & Xiaojun Liao(2005). Inactivationand conformational change of horseradish peroxidase induced by pulsed electric field. FoodChemistry, 92,473-479.
    
    [20]钟葵,孙志健,廖小军,等.高压脉冲电场对辣根过氧化物酶活性及构象的影响效果[J].中国食品学报,2005,5(3):31-36.
    
    [21]钟葵,胡小松,陈芳,等.脉冲电场对果胶酯酶的活性及构象的影响[J].农业工程学报,2005,21(2):149-152.
    
    [22]Kui Zhong, Jihong Wu, Zhengfu Wang, Fang Chen, Xiaojun Liao, Xiaosong Hu & Zhenhua Zhang(2006). Inactivation kinetics and secondary structural change of PEF-treated POD and PPO. Food Chemistry, 104,483-491.
    
    [23]RuobingZhang,LunCheng,LimingWang&ZhichengGuan(2006).Inactivation effects of PEF on Horseradish Peroxidase(HRP) and Pectinesterase(PE).IEEE transaction on plasma science,Vol.34,No.6:2630-2636
    
    [24]李迎秋,章万忠,陈正行,等.高压脉冲电场对大豆分离蛋白结构特征的影响[J].食品科学,2007(3)
    
    [25]许强,杨体强,敖敦格日勒,等.应用圆二色光谱研究电场对辣根过氧化物酶二级结构的影响[J].光谱学与光谱分析,2007,27(3):565-568
    
    [26]Castro, A.. J., Barbosa-Canovas, G V., & Swanson, B. G (1993). Microbial inactivation offoods by pulsed electric fields. Journal of Food Processing and Preservationg, 17,47-73
    
    [27]Hulsheger, H., Pottel, J., &Niemann, E. G.(1983). Eletric field effects on bacteria and yeastcells. Radiation and Environmental Biophysics, 22,149-162.
    
    [28]Peleg M. 1995. A model of microbial survival after exposure to pulsed electric fields. J SciFood Agric 67:93-9.
    
    [29]Giner, J., Gimeno, V., Espachs, A., Elez, P., Barbosa-Cánovas, G. V., & Martin-Belloso,O.(2000). Inhibition of tomato (Lycopersicon esculentum Mill). Pectin methylesterase by pulsedelectric fields. Innovative Food Science and Emerging Tenchnologies, 57-67.
    
    [30]Darby N J,Creighton T EProtein Structure.Oxford,IRL Press, 1993,10-22
    
    [31]Mozhaev V,Bereezin H V,Maartinek,CRC Crit Rev Biochem,1998,23-35
    
    [32]Fersht A.Enzyme Structure and Mechanism.2nd ed.New York:WH Freeman,1985
    
    [33]阎隆飞,孙之荣.蛋白质分子结构[M].清华大学出版社.2000,177-190
    
    [34]Whitaker,John R,Principles Of Enzymology For The Food Science chap.2,MarcelDekker,Inc.,New York,1972
    
    [35]Price,Nicholas C and Stevens,Lewis,Fundamentals of Enzymology chap.3,Oxford Uni versityPress,NewYork,1982
    
    [36]谢孟峡,刘媛.红外光谱酞胺Ⅲ带用于蛋白质二级结构的测定研究[J],高等学校化学学报,2003,24(4):226-238
    
    [37]Chang C. T, Wu C. S. C, Yang J. T. Circular dichroic analysis of protein conformation:inclusion of the b-turns.Anal. Biochemistry, 1978(91):25-36.
    
    [38]张树政,孟广震,何忠效.酶学研究技术[M].科学出版社,1987
    
    [39]Chang C. T, Wu C. S. C, Yang J. T. Circular dichroic analysis of proteinconformation:inclusion of the b-tums.Anal. Biochemistry, 1978(91):13-31.
    
    [40]Grahl T., M}rkl H. Killing of microorganisms by PER Apple Microbial Biotechnol,1996(45):148-157
    
    [41]Greenfield N. J. Applications of circular dichroism in protein and peptide analysis. Trends inAnalytical Chemistry,1999,18(4):236-244
    
    [42]许禄.计算机化学方法及其应用[M].北京:化学工业出版社,1990,78-96
    
    [43]Roe R J.Computer simulation of Polymers[M].New Jersey,USA:Prentice Hall,1991,1-8
    
    [44]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2002,1-7
    
    [45]解伟,王翼飞.蛋白质折叠的计算机模拟[J].上海大学学报,2000,6(2):145-149
    
    [46]解伟,王翼飞.蛋白质折叠的三维计算机模拟[J].上海大报,2002,6(6):549-550
    
    [47]王骏.蛋白质动力学理论研究中的计算机模拟方法[J].物理学进展,1997,17(3):289-319
    
    [48]陆忠兵,石碧,刘欢.植物单宁—蛋白质象话作用的计算机模拟[J].皮革科学与工程,2001,11(4):1-29
    
    [49]邱榕.火灾中温度升高对蛋白质构象影响的计算机模拟[J].火灾科学,2000,9(3):14-20
    
    [50] BAKER D.SALI A.Protein structure prediction and structural genoenics[J]. Science,2001,294(5940):93-96
    
    [51] ANCHEZ RS PIEPER U,MELO F,etal.Protein structure prediction and structuralgenoenics[J].Nature Structrural Biology,2000,7(supp):986-990
    
    [52]姜怀春,李宏.DNA和RNA的结构基因组学研究的应用前景[J].重庆工商大学学报,2003,20(1):23-26
    
    [53] G}skov} D., Sigler K., Janderova B., et al. Effect of High-voltage Electric Pulses on Yeast Cells: Factors Influencing the Killing Efficiency Bioelectrochem. Bioenerg. 1996(39):195-202
    
    [54]郝柏林等.理论物理与生命科学[M].上海科学技术出版社.1997,3-4
    
    [55] Gajhede M.,Schuller D. J.,Henriksen A.,et al. Crystal structure of horseradish peroxidase Cat 2. 15 A resolution, Nat. Struct. Biol.1997,4,1032-1038
    
    [1]但果.脉冲电场食品非热处理的理论与实验研究[D].大连理工大学,2003.
    
    [1]王璋,编.食品酶学[M].北京:中国轻工业出版社,2002年.
    
    [2]洪伟杰,张朝晖,芦国营.辣根过氧化物酶的结构与作用机制[J].生命的化学,2005,25(1):33-36.
    
    [3]宁正祥,主编.食品成分分析手册[M].北京:中国轻工业出版社,1998年.
    
    [4] Hulsheger, H., Pottel, J., &Niemann, E. G.(1983). Eletric field effects on bacteria and yeast cells. Radiation and Environmental Biophysics, 22,149-162.
    
    [5]叶卫平,方安平,于本方,编.Origin 7.0科技绘图及数据分析[M].北京:机械工业出版??社,2004年.
    
    [1]斯奈德L R,柯克兰J J著,高潮等译.现代液相色谱法导论[M].北京化学工业出版社,1998,2-3
    
    [2]李桂贞.气相、高效液相及薄层色谱分析[M].上海华东化工学院出版社,1992,2-4
    
    [3]Whitaker,John R,Principles Of Enzymology For The Food Science chap.2,Marcel Dekker,Inc,New York,1972
    
    [4]阎隆飞,孙之荣.蛋白质分子结构[M].清华大学出版社.2000,168-177
    
    [1]王宗明,何欣卿,孙殿卿.实用光谱学【M】一匕京石油化学工业出版社,1990,2
    
    [2]宁水成.有机化合物结构鉴定与有机波谱学[M].北京清华大学出版社,1989,3-4
    
    [3]吴瑾光.近代傅立叶变换红外光谱技术及应用(上册)[M].科学技术文献出版社,1994,130-134
    
    [4]谢孟峡,刘媛.红外光谱酞胺Ⅲ带用于蛋白质二级结构的测定研究[J].高等学校化学学报,2003,24(4):226-231
    
    [5]Byler D.M.,Susi H.. Examination of the secondary structure of proteins by deconvolved FTIR spectra,Biopolymers,1986,25(3):469-487
    
    [6]Susi H., Byler D.M..Resolution-enhanced Fourier transform infrared spectroscopy of enzymes,Methods Enzymol,1986,130:290-311
    
    [7]蒋俊光,王振新,刘长伟等.红外光谱和圆二色光谱法研究氰根配位的辣根过氧化物酶(IMP)的热伸展过程[J].高等学校化学学报,2001,22(7):1131-1133
    
    [8]夏炳乐,彭敦耕,郑晓云等.外源镰(Ⅲ)对辣根过氧化物酶的结构的影响[J].化学学报,2004,62(14):1318-1322
    
    [9]曾庆梅,潘见,谢慧明等.超高压处理对辣根过氧化物酶二级结构及其活力的影响[J].食品科学,2005,26(5):29-33
    
    [10]Darby N J.Creighton T E.Protein Structure.Oxford,IRL Press, 1993,10-22:132-145
    
    [1] Chang C. T, Wu C. S. C, Yang J. T. Circular dichroic analysis of protein conformation:inclusion of the b-turns.Anal. Biochemistry,1978(91):13-31.
    
    [2]王守业,徐小龙,刘清亮,等.荧光光谱在蛋白质分子构象研究中的应用[J].化学进??展,2001,13(4):257
    
    [3] LakowiczJ R.Principles of fluorescence spectroscopy .New York Plenum Press. 1983:257-295
    
    [4]郭尧君.荧光实验技术及其在分子生物学中的应用[M].北京:科学出版社,1979,136-137
    
    [5]陶蔚孙,李惟,姜涌明.蛋白质分子基础第二版[M]北京:高等教育出版社,1995,238-275.
    
    [6]刘稳.植物过氧化物酶超家族的分子结构[J].生命科学,2002,14(4):214
    
    [7]何华,谢海英,戴丽,等.洛美沙星-Tb~(3+)配合物与牛奶血清蛋白(BSA)相互作用的荧光光谱研究[J].光谱学与光谱分析,2006,26(13):480-483
    
    [8]李乐军,陈树德,乔登江.脉冲电场与牛奶血清蛋白(BSA)相互作用的同步荧光光谱和拉蔓光谱比较研究[J].光谱学与光谱分析,2006,16(1):81-85
    
    [1] Hill J. R., Sauer J. Molecular mechanics potential for silica and zeolite catalysts based onabinitio calculations [J]. J Phys Chem, 1994,98:1238.
    
    [2] C. A Schiffer , V. Dotsch, K. Wuthrich , W. F. van Gunsteren. Exploring the role of thesolvent in the denaturation of a protein: a molecular dynamics study of theDNA binding domain of434 repressor [J]. Biochemistry, 1995, 34: 15057-15067.
    
    [3] Church WB. Homology modeling of histidine - containing phosphor carrier protein andeosinophil-derived neurotoxin: construction of models and comparison with experiment [J].Proteins, 1995,23:422-432.
    
    [4]朱正和,等.分子结构与分子势能函数[M].北京:科学出版社,1997.
    
    [5]朱正和,等.原子分子反应静电学[M].北京:科学出版社,1996.
    
    [6]徐光宪,王祥云.物质结构(第二版)[M].北京:高等教育出版社,1987.
    
    [7]周公度,段连运.结构化学基础(第三版)[M].北京:北京大学出版社,2002.