基于PRBA模型的外骨骼式人机携行运载系统动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外骨骼技术是近年来智能机器人学科研究的重要热点之一。外骨骼最初来源于人类的仿生技能,诸如头盔、铠甲等是最基本的人体外骨骼,只有保护防御作用。随着科学技术的进步,为外骨骼配备动力系统,使其在保护人类的同时能够分担人体从事各项活动时所承受的外载荷,因此现代意义上的外骨骼的概念就是模拟人体的骨骼、肌肉和关节系统为之配备相应的金属外骨骼,使负重主要通过外骨骼传递至地面;通过将外骨骼穿戴于人体,融合二者为人机耦合系统,在机械、动力和控制系统的协同工作下,提高人体运动时的负重能力,增强人的耐力,这就是人机携行运载系统。此系统可有效的解决军事和民用领域中日益增长的负荷与人体承载能力有限之间的矛盾。目前包括美国、日本和俄罗斯等国在内的多家科研机构和高等院校均将外骨骼技术列为重点研究内容,其中就包括全球著名的Lockheed Martin公司。
     论文从人机耦合模型、外骨骼运动学分析、多自由度振动响应研究、人体非线性运动特征函数建模和完整约束的多刚体系统动力学仿真五方面对外骨骼式人机携行系统中的关键技术开展了以下研究工作:
     (1)基于生物力学和人机工程学理论,论文提出了人机耦合的概念,在人机工程参数、关节自由度的设置与约束和动力系统的设计三个方面对人机耦合进行了初步的探索,建立了以最小功能尺寸参数为目标的外骨骼参数化设计的数学模型;同时以外骨骼的垂向承载功能要求为基础,选择液压系统模式作为外骨骼的动力系统,建立了外骨骼的系统动力模型;
     (2)论文确定了人主机辅的人机携行运载系统的工作模式,并针对外骨骼固有的机械运动特点,提出了外骨骼的PRBA运动模型;基于多刚体平面运动分析理论,在人体矢状面内建立“蹲起”、“单膝跪”和“行走”姿态的牵连运动和相对运动的运动方程,利用基点合成法确定外骨骼各构件的空间运动数学模型;
     (3)论文针对人机携行运动速度的提升导致冲击和振动现象的发生,提出了将多自由度振动分析理论应用于外骨骼研究的思路,并在髋关节和踝关节处设计了两种二系悬挂弹性阻尼系统模型,建立了各系统的多自由度运动微分方程,通过MATLAB仿真获得外加简谐激励的输出响应特性;基于刚柔耦合理论,运用ANSYS有限元分析软件,对背负系统进行了强度和刚度分析,以及外骨骼整体结构的模态分析;
     (4)论文采用MOCAP动作捕捉系统,以各关节角度变化量作为模型的输入参量,重塑人体典型运动姿态模型;以INVSPOLY函数为基函数,结合有限元分析理论,通过区域划分和区域内节点循环运算的方法,将改进后的移动最小二乘法用于将角度变化中的非线性函数关系转换为线性关系;以每个区域内的数据误差平方和最小化作为数据拟合误差判别准则,建立典型运动姿态的以角度变化为变量的空间运动函数关系;
     (5)按照外骨骼依附于人体而存在的模式,论文提出了以人机耦合为基础,建立外骨骼整体结构的完整约束多刚体系统模型;并以各关节角度为广义坐标,以液压缸的支撑力为广义输出量,基于D'Alembert-Lagrange动力学分析理论,建立外骨骼系统的Lagrange动力学方程组;选择“蹲起”姿态作为仿真对象,将该姿态的非线性曲线拟合赋以系统中的广义坐标,运用MATLAB编程进行仿真研究,获得各关节的弯矩时域特性曲线,可为动力系统的能量设计和传感、控制系统的策略研究提供可靠的和有益的理论基础;最后通过对外骨骼原理样机的应变测试试验和试验结果与有限元分析结果对比的残差分析,验证了原理样机的强度可靠性。
     通过对以上各项外骨骼关键技术的理论研究,论文定义了人机耦合的概念,建立了以垂向承载为目标、以人机协调运动为约束条件的基于人机耦合的设计模型,并通过创建外骨骼PRBA运动数学模型,解决了外骨骼的建模难题和人机分离研究的问题;运用多自由度振动分析理论和刚柔耦合理论,建立外骨骼多关节的多自由度运动微分方程和有限元模态分析模型,解决了外骨骼结构轻量化设计、动力系统精确设计与人机携行系统高频运动、大负重功能要求之间的矛盾;建立外骨骼整体结构的完整约束多刚体系统动力学分析模型,并以运用MOCAP动作捕捉系统获取、且经过改进后的移动最小二乘法非线性变换、最终建立的典型运动姿态的以角度变化为变量的空间运动函数关系为约束条件,获得外骨骼各关节点的驱动力矩的精确解,解决了以往研究中存在的动力系统需提供的动态输出认识模糊、控制系统实时随动控制策略缺乏建模基础理论、外骨骼结构局部优化设计缺乏实时动态载荷谱等相关问题。论文部分研究成果已经应用于西南交通大学作为主研单位承担的“单兵外骨骼助力系统原理样机研制”项目中,实现了人机携行运载系统大负荷承载、人机运动协调、高效的动力系统输出特性等关键技术的突破,为外骨骼关键技术的研究提供了有益、合理和可靠的理论基础。
Exoskeleton has been among the global researching focus in the field of science and technology in recent years. The idea of exoskeleton was originally conceived from bionic skills of human beings. Things like helmets and armour are the simplest mode of exoskeleton for protection and defenses. As the technology improves, the dynamic system for exoskeleton can share external load that the body bears in different activities apart from protecting the human, technology of which has been achieved. Therefore modern notion of exoskeleton means stimulating human skeleton, muscles and joint systems and thus equipping them corresponding metal exoskeleton to pass the load to the ground through it. It also means a man-machine coupling system composed by body and exoskeleton work cooperatively with help of mechanical, dynamic and control systems to enhance loading ability and body endurance, which is defined as man-machine accompanying load system. This system can effectively solve the contradiction between the increasing load of the military and civil field and the limited human carrying capacity. At present, exoskeleton technology has been the important research content among the United States, Japan and Russia and other countries. In which the global famous Lockheed Martin Corporation is included.
     Focusing on key technologies of man-machine system in mode of exoskeleton, the paper studies theoretically on exoskeleton, the man-machine accompanying load system from aspects of dynamics analyses on exoskeleton, multi-DOF vibration response, human body nonlinear motive characteristic function, and multi-rigid-body system dynamics with holonomic constraints. Research has been mainly developed from the following several aspects.
     (1) Based on biomechanics and ergonomics, the notion of man-machine coupling is introduced in the paper in the field of exoskeleton research. Man-machine coupling is explored preliminarily from ergonomic parameters, and freedom degree of joints setting and constraints, dynamic system design. A mathematical model of exoskeleton in parameterized design is built using minimal dimension parameters under function. Meanwhile, on basis of functional requirements for vertical loading, the dynamic model of exoskeleton system is set up by taking hydraulic system patter as the dynamic system of exoskeleton.
     (2) The work patter of'man dominates, machine assists'of man-machine system has been set, and the idea of PRBA motion model is proposed for inherent characteristics of mechanical motion; In view of analysis theory of multi-rigid-body plane motion, motion equations of the following motion and relative motion of postures of'squat'、"single leg kneeling" and "walking" is built inside human vertical plane. A mathematical model of each component space motion is defined by point synthetic method.
     (3) For shocking and vibration phenomena occurred after movement speed increase of the man-machine accompanying load system, the paper proposes a new idea to put multi-DOF vibration analysis theories into exoskeleton studies. Two system models of secondary suspension elastic damping are designed in hips and ankles, and multi-DOF motion differential equations of each system are set up. Output response characteristics of additional harmonic excitation are acquired by MATLAB stimulation. Based on the rigid-flexible coupling theories, strength and stiffness of the bearing system are analyzed by ANS YS, finite element analysis software, as well as modal analysis of the whole exoskeleton structure.
     (4) Adopting MOCAP, a motion capture system, a motion model of typical postures when human body moves is rebuilt with angle variation of each joint as input parameters; Taking INVSPOLY function as primary function, and combined with finite element analysis theory together with regionalism and regional node looping calculation methods, the updated moving least-square method is applied into transferring nonlinear function of angle variation into linear function. Minimizing error sum of squares from each region to be data fitting error criterion, space motion function is built with angle variation as variables in typical motion postures.
     (5) Fitting into attachment model of exoskeleton to the body, this paper proposes establishing multi-rigid-body system model with holonomic constraints for the whole structure of exoskeleton with basis of man-machine coupling. According to D'Alembert-Lagrange dynamics analysis theory, Lagrange dynamics equations of exoskeleton system are established with joint angles as generalized coordinates and bearing power of hydraulic cylinder as generalized outputs. Selecting'squat'as simulation object, taking nonlinear curve fitting of this posture as generalized coordinates, characteristic curves of bending moment domain of each joint are gained though MATLAB programming for stimulation study, which is to provide a reliable and useful theoretical foundation for energy design of dynamical system, sensing and control systems.
     Through studies on key technologies of exoskeleton, man-machine coupling model is built with basis of man-machine coupling with vertical load as object and man-machine accompanying load as constraint condition. In addition, a mathematical model for PQBA motion of exoskeleton is built, though which the difficulties in exoskeleton modeling and man machine separation have solved. By multi-DOF vibration analysis theory and rigid-flexible coupling theory, the conflicts between exoskeleton structure lighting, dynamic system accurate design and high-frequency man-machine accompanying load and heavy load bearing have been solved by differential equations of multi-DOF motion derived and FEA (finite element analysis) motion model built. Kinetic analytical model of multi-rigid-body system with holomonic constraints for the whole exoskeleton structure is built; Through MOCAP, the motion capture system and nonlinear transformation obtained by updated moving least square method, space motion function relationship with angle variation of typical motion posture as variables is finally established in acquiring exact solution for driving movement of each joint, by which the vague cognition in dynamic output by dynamic system, lack of basis modeling knowledge in real-time and follow-up control strategies in control system, and lack of real-time dynamic load in local optimization of exoskeleton structure existing in previous studies.
     The research result presented by the paper has been partly applied into'experimental prototype of individual exoskeleton load assisting system', a programme which is mainly undertaken by Southwest Jiaotong University. The programme has achieved breakthrough in heavy load bearing in man-machine accompanying load system, man-machine coordination, output characteristic of efficient dynamic system and other key technologies which has laid a beneficial, reliable and solid theoretical foundation for other key technology studies.
引文
[1]Liu Xin,Song Xian-Min,Wang,Zhe.Design of intelligent transportion operation modebased on AAA[J]. Jilin Daxue Xuebao,2010,40(1):189-194.
    [2]Shuai Bin, Wang, Chaofeng, Yan Haomin. Benefit research on price integrated model in multimodal transportion [J]. Proceedings of the 2nd International Conference on Transportation Engineering, ICTE 2009,209,345:4311-4316.
    [3]Iryo, Takamasa, Kusakabe, Takahiko, Yamanaka. Effect on Travelers'Activities and Environmental Impacts by Introducing a Next-Generation Personal Transport System in a City[J]. International Journal of Sustainable Transportation,2011,7(3):226-237.
    [4]王云鹏,王利芳,李世武.道路运输系统分析及发展对策研究[J].公路交通科技,200522(7):150-153.
    [5]鲍香台,李旭宏.公路快速货运系统发展现状及政策建议[J].东南大学学报(自然科学版),2003,33(6):782-787.
    [6]刘诚,陈治亚.含装卸工调配的物流车辆配送路径问题的研究[J].铁道科学与工程学报,2006,3(4):79-83.
    [7]范莉莉,王晓刚.铁路运输高新技术装备社会效益评价的研究[J].系统工程学报,2005,20(1):38-42.
    [8]刘雪芹,黄世席.美国户外运动侵权的法律风险和免责问题研究[J].天津体育学院学报,2009,24(3):233-236.
    [9]Chang-Geun, Lee Kicheol, Spencer Paul. Effectiveness of advanced bone conduction earphones for people who enjoy outdoor activities. Proceedings of the Human Factors and Ergonomics Society,2011,1788-1792.
    [10]Nery, T.C.S. Investigation of workers carrying out outdoor activities in environmentally contaminated areas[J]. WIT Transactions on Information and Communication Technologies,2010,43(1)183-191.
    [11]于永中,李天麟,刘尊永.单兵负荷量标准的研究[J].中华劳动卫生职业病杂志,1991,9(1):16-22.
    [12]武树德,唐振华,刘献朝.干热环境下徒步行军适宜负荷量现场研究[J].解放军预防医学杂志,1991,9(1):44-46.
    [13]郑国威,张锦贤.从美国陆军作战负荷看士兵负荷训练[J].军事体育进修学院学报,200726(3):40-41.
    [14]Sharp, Marilyn A, Patton. Data base of physically demanding tasks performed by U.S. army soldiers. Proceedings of the Human Factors and Ergonomics Society, 1996,1(1):673-677.
    [15]Ash, J.E. DESIGN, TESTING AND PERFORMANCE OF METAL SOLDIERS[J]. Concrete (London),1978,12(2):25-26.
    [16]Todd, Wendy L, Paquette. Study of compatibility of army systems with anthropometric characteristics of female soldiers. Proceedings of the Human Factors and Ergonomics Society,1996,1:683-687.
    [17]Kucera, Joshua. Army looks to issue protective eyewear to all US soldiers in training[J]. Jane's Defence Weekly, July 2005.
    [18]Hodge, Nathan. Cost of equipping US soldiers has trebled claims US Army chief[J]. Jane's Defence Industry, July 2006.
    [19]Talbot, David. Super soldiers[J]. Technology Review,2002,105(8):44-46.
    [20]Lai Eva, Friedl Karl E. Digital soldiers:Transforming personalized health in challenging and changing environments. Proceedings of the 6th International Workshop on Wearable, Micro, and Nano Technologies for Personalized Health:"Facing Future Healthcare Needs",2010,2009:5-8.
    [21]Karr Clark R. Synthetic soldiers[J]. IEEE Spectrum,1997,34(3):39-45.
    [22]Garga Amulya K, Hall David L. Perspectives on the progress of data fusion for soldiers. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 1999,1:402-406.
    [23]Bush Nigel E, Fullerton Nicole, Crumpton Rosa. Soldiers'personal technologies on deployment and at home[J]. Telemedicine and e-Health,2012,18(4):253-263.
    [24]Pal Madhu Sudan, Majumdar Deepti, Bhattacharyya Moushum. Optimum load for carriage by soldiers at two walking speeds on level ground. International Journal of Industrial Ergonomics,2009,39(1):68-72.
    [25]Bangerter Ann, Gravely Amy, Cutting Andrea.Comparison of methods to identify Iraq and Afghanistan war veterans using department of Veterans affairs administrative data[J]. Journal of Rehabilitation Research and Development,2010,47(8):815-821.
    [26]Vogel Ben. US approves supplementary spending for Iraq and Afghanistan operations[J]. Jane's Defence Industry, October 2005.
    [27]Davies Sean. Just war[J]. Engineering and Technology,2011,6(8):38-40.
    [28]Orloff Brian. In war the 'truth' hurts. Editor and Publisher,2005,138(4):6-8.
    [29]Ruark Gregory A, Orvis Kara L, Horn, Zachary. Trust as defined by U.S. Army Soldiers. Proceedings of the Human Factors and Ergonomics Society, 2009,3:1924-1928.
    [30]Majumdar D, Srivastava K.K. Purkayastha S.S. Physiological effects of wearing heavy body armour on male soldiers[J]. International Journal of Industrial Ergonomics, 1997,20(2):155-161.
    [31]Liu Bor-Shong. Backpack load positioning and walking surface slope effects on physiological responses in infantry soldiers[J]. International Journal of Industrial Ergonomics,2007,37(9-10):754-760.
    [32]Demczuk Victor. Field validation of an energy expenditure model for walking soldiers[J]. International Journal of Industrial Ergonomics,1998,22(4-5):4-5.
    [33]Attwells Renee L, Birrell Stewart A, Hooper Robin H. Influence of carrying heavy loads on soldiers'posture, movements and gait[J]. Ergonomics,2006,49(14):1527-1537.
    [34]Beintema Jaap A, Toet Alexander, De Vries Sjoerd J. Conspicuity of moving soldiers. Proceedings of SPIE-The International Society for Optical Engineering,2011,8014.
    [35]Monocular NVG for future soldiers[J]. Jane's International Defense Review, March 2005.
    [36]Brandt John R. Soldiers of fortune? At ease! [J]. Industry Week,2003,252(4):23.
    [37]Jusko Jill. When Soldiers Come Marching Home[J]. Industry Week,2003,252(11):11.
    [38]Bollington Peter. Teaching future soldiers to think for themselves[J]. Chronicle of Higher Education,2003,49(30):B18.
    [39]Ducruet Cesar. Lee Sung-Woo. Frontline soldiers of globalisation:Port-city evolution and regional competition[J]. GeoJournal,2006,67(2):107-122.
    [40]蒋毅,陈晓,周宏.交互式单兵作战仿真系统的研究与实现[J].系统仿真学报,2005,17(5):1276-1278.
    [41]蒋毅,周宏,陈晓美.信息化单兵防护装备浅析[J].防护装备技术研究,2010,5:5-7.
    [42]中国地貌纲要[M].北京:中国地图出版社,1993.
    [43]刘爱利,汤国安.中国地貌基本形态DEM的自动划分研究[J].地球信息科学,2006,8(4):8-14.
    [44]张西洲.急性高原病[J].人民军医,2008,51(10):638-639.
    [45]李素芝,高让琪.高原疾病学[M].北京:人民卫生出版社.
    [46]朱平,赵夏夏,苗英.急进高海拔地区血氧饱和度和心率的动态检测分析[J].西北国防医学杂志,2011,32(5):377-378.
    [47]Li Wenhua, Gong Jing, Dongya Yuan. The effects of high altitude hypoxia environment on ultrastructure of the rat lung and heart. Proceedings:2011 IEEE International Symposium on IT in Medicine and Education,2011,2:127-131.
    [48]Bernardi Luciano. Heart rate and cardiovascular variability at high altitude. Annual International Conference of the IEEE Engineering in Medicine and Biology Proceedings,2007:6678-6680.
    [49]Wesfreid Eva, Billat Veronique. Randomness and changes of heart rate and respiratory frequency during high altitude mountain ascent without acclimatization[J]. Physica A: Statistical Mechanics and its Applications,2012,391 (4):1575-1590.
    [50]Ridolfi Andrea, Vetter Rolf, Sola Josep. Physiological monitoring system for high altitude sports[J]. Procedia Engineering,2010,2(2):2889-2894.
    [51]刘苏.我国户外运动法律规制模式研究[J].武汉体育学院学报,2011,45(4):33-38.
    [52]Xiao Zhetao, Gong Wenye, Hao Lijun. Study on children's outdoor recreational site design in urban residential areas [J]. Advanced Materials Research, 2012,450(451):995-998.
    [53]Tait Niki. Waterproof and outdoor clothing:Fit for purpose[J]. Textiles Magazine, 2004,31(4):11-15.
    [54]Shirado Osamu, Shundo Motoyuki, Kaneda Kiyoshi. Outdoor winter activities of spinal cord-injured patients:With special reference to outdoor mobility[J]. American Journal of Physical Medicine & Rehabilitation,1995,74(6):408.
    [55]Micheloni C, Salvador E, Bigaran F. An integrated surveillance system for outdoor security. IEEE International Conference on Advanced Video and Signal Based Surveillance-Proceedings of AVSS 2005,2005:480-485.
    [56]中国统计年鉴[M].北京:中国统计出版社,2003.
    [57]毛海军,郭洪涛,马成林.基于Automod仿真平台的钢材物流中心建模分析[J].东南大学学报(自然科学版),2008,38(2):314-318.
    [58]冯芬玲,景莉,杨柳文.基于改进SLP的铁路物流中心功能区布局方法[J].中国铁道科学,2012,33(2):121-128.
    [59]Liu Xiaohui, Ouyang Weina, Zhu Cuijuan. Research on the optimal location planning of city logistics center.2010 Chinese Control and Decision Conference, CCDC 2010, 2010:472-476.
    [60]Hua Jiang, Liang Qi-Hong. Study on logistics center location judgment based on artificial neural network. Proceedings of the 1st International Workshop on Education Technology and Computer Science, ETCS 2009,2009,1:346-348.
    [61]程文明,王金诺,张质文,徐保林.铁路集装箱场系统模型及动态模拟[J].铁道学报,1994,3.
    [62]李素云,鲍彤华.新时期粮食包装的现状及发展趋势[J].粮食流通技术2008,2:41-43.
    [63]Tarsitano S.F, Lavalli K.L, Home F. The constructional properties of the exoskeleton of homarid, palinurid, and scyllarid lobsters[J]. Hydrobiologia,2006,557(l):9-20.
    [64]Boelmann F, Romano P, Fabritius H. The composition of the exoskeleton of two Crustacea:The American lobster Homarus americanus and the edible crab Cancer pagurus[J]. Thermochimica Acta,2007,463(1-2):65-68.
    [65]Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models[J]. Biomaterials,1996,17(1):31-35.
    [66]Knight in tarnished armor [J]. Chronicle of Higher Education,2000,46(38):A58.
    [67]Kazerooni H. Human augmentation and exoskeleton systems in Berkeley [J]. International Journal of Humanoid Robotics,2007,4(3):575-605.
    [68]Zhu Jia-Yuan, Zhou Hong. Realization of key technology for intelligent exoskeleton load system[J]. Lecture Notes in Electrical Engineering,2012,136:77-82.
    [69]Zhu Jiayuan, Wang Yingze, Zhou Hong. Human-machine coupling control of exoskeleton intelligent load carry robot.2012 IEEE International Conference on Mechatronics and Automation, ICMA2012,2012:268-272.
    [70]Koch Andrew. Load-carrying'Exoskeleton'leaves the laboratory [J]. Jane's Defence Weekly, January 2004.
    [71]DeLuca Bryan. Cyborgs-Really? [J]. Electronic Products (Garden City, New York), 2010,52(5).
    [72]Kazerooni H. Exoskeletons for human power augmentation.2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2005:3120-3125.
    [73]Sato Yutaka, He Jiaou, Kobayashi Hiroyuki. Development and quantitative performance estimation of the back support muscle suit[J]. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2012,78(792):2987-2999.
    [74]Yamada Yasuyuki, Hiyoshi Kohoku-ku, Yokohama-shi Kanagawa. Development of upper limb orthosis with shoulder joint tracking system[J]. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2011,77(775):933-942.
    [75]Gopura R.A.R.C, Kiguchi Kazuo. A human forearm and wrist motion assist exoskeleton robot with EMG-based fuzzy-neuro control. Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008,2008:550-555.
    [76]Veneman J.F, Ekkelenkamp R, Kruidhof R. A series elastic-and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots[J]. International Journal of Robotics Research,2006,25(3):261-281.
    [77]刘春波.人体结构生理学[M].北京:人民卫生出版社,2010,6,ISBN:9787117128346.
    [78]成大先.机械设计手册,第一篇,第十章[M].北京:化学工业出版社,2004,1.
    [79]Bergmann G, Graichen F. Is staircase walking a risk for the fixation of hip implants?[J]. Biomech,1993,28(5):535-553.
    [80]Fessy M.H., N'Diaye A, Carret J.P. Locating the center of rotation of the hip[J]. Surg RadiolAnat,1999,21(4):247-250.
    [81]Kim Y.T, Azuma H. The nerve endings of the acetabular labrum[J]. Clin Orthop, 1995,320:176-181.
    [82]Lim L.A, Carmichael S.W, Cebanela M.E. Biomechanics of total hip arthroplasty[J]. AnatRec,1999,257(3):110-116.
    [83]Sutherland A.G., D'Arcy S, Smart D. Abductor muscle weakness and stress around acetabular components of total hip arthroplasty:A finite element analysis. Int Orthop, 1999,23(5):275-278.
    [84]Aagaard P., Simonsen E.B., Andersen J.L. Antagonist muscle co-activation during isokinetic extension[J]. Scan J Med Sci Sports,2000,10(2):58-67.
    [85]Andriacchi T.P., Briac D. Funtional ligament testing in the anterior cruciate ligament deficient knee[J]. Clin Orthop Rel Res,1993,288(March):40-47.
    [86]Fukuda Y., Takai S., Yoshino N. Impact load transmission of the knee joint-influence of leg alignment and the role of meniscus and articular cartilage[J]. Clinical Biomech, 2000,15(5):16-521.
    [87]Holden J.P., Chou G, Stanhope S.J. Changes in knee joint function over a wide range of walking speeds[J]. Clinical Biomech,1997,12(6):375-382.
    [88]Kellis E. Baltzopoulus V. In vivo determination of the patella and hamstrings moment arms in adult males using videofluoroscopy during submaximal knee extension and flexion[J]. Clinical Biomech,1999,14:118-124.
    [89]Komistek R.D., Dennis D.A., Mabe J.A. An invivo determination of patellofemoral contact positions[J]. Clinical Biomech,2000,15:29-36.
    [90]Ahn T.K., Kitaoka H.B., Luo Z.P. Kinematics and contact characteristics of the first metatarsophalangealjoint[J]. Food Ankle Int,1997,18:170.
    [91]Astion D.J., Deland J.T., Otis,J.C. Motion of the hindfoot after simulated arthrodesis[J]. Bone Joint Surg,1997,79(A):241.
    [92]Cheng J.C.Y., Leung S,S,F., Leung A.K.L. Change of foot size with weightbearing:A study of 2829 children 3 to 18years of age [J]. Clin Orthop,1997,342:123.
    [93]Cavanagh P.R., Morag E., Boulton A.J.M. The relationship of static foot structure to dynamic foot function[J]. Biomechanics,1997,30:243-250.
    [94]Earll M., Wayne J., Brodrick C. Contribution of the deltoid ligament to ankle joint contact chaeacteristics:A cadaver study [J]. Foot Ankle Int,1996,17:317.
    [95]Van den, Bogert A.J., Read L. An analysis of hip joint loading during walking,running and skiing[J]. Med Sci Sports,1999,31(1):131-142.
    [96]Catani F., Hodge A., Mann R.W. The role of muscular co-contraction of the hip during movement[J]. Chir Organi Mov,1995,80(2):227-236.
    [97]Delp S.L, Maloney W. Effects of hip centet location on the moment-generating capacity of muscles[J]. Biomech,1993.26(5):485-499.
    [98]Hurwitz D.E, Andriacchi T.P. Biomechanics of the hip[J]. The Adult Hip,75-85.
    [99]Neumann D.A. Hip abductor muscle activity as subjects with hip prosthese walk with diffient methods of using a cane[J]. Phys Ther,1998,78(5):490-501.
    [100]Kwak S.D., Ahmad C.S., Gardner T.R. Hamstrings and iliotibial forces affect knee ligaments and contact pattern[J]. Orthop Res,2000,18:101-108.
    [101]Vedi V., Williams A., Tennant S.J. Meniscal movement.An in-vivo study using dynamic MRI [J]. Bone Joint Surg,1999,81B(1):37-41.
    [102]Wretenberg P., Nemeth G., Lamontate M. Passive knee muscle moment arms measured in vivo with MRI[J]. Clinical Biomech,1996,12(8):439-446.
    [103]Yu B., Stuart M.J., Kienbarcher T. Valgusvarus motion of the knee in normal level walking and stair climbing[J]. Clinical Biomech,1997,12(5):286-293.
    [104]Sammarco G.J. Peroneus longus tendon tears:Acute and chronic[J]. Foot Ankle Int, 1995,16(5):245-253.
    [105]Wang Q.W., Whittle M., Cunningham J. Flibula and its ligaments in load transmission and ankle joint stability [J]. Clin Orthop,1996,330:261.
    [106]Snow R.E., Williams K.R., Holmes G.B. The effects of wearing high heeled shoes on pedal pressures in women[J]. Foot Ankle,1992,13:85-92.
    [107]Sarrafian S.K. Retaining systems and compartments [J]. In Anatomy of the Foot and Ankle,1993,137-149.
    [108]Mann R.A. Biomechanics of the foot and ankle[J]. In Surgery of the Foot and Ankle, 1993,3-43.
    [109]陆爱云.运动生物力学[M].北京:人民体育出版社,2010.
    [110]Margareta Nordin, Victor H. Frankel. Basic biomechanics of the Musculoskeletal System[M]. New York University Medical Center, New York, NY, USA.
    [111]刘大炜,王立平.基于工作空间的4RRR冗余井联机构支链优化[J].清华人学学报(自然科学版),2010,50(A):1239-1242
    [112]杨毅,丁希仑.基于空间多面体向心机构的伸展臂设计研究[J].机械工程学报,2011,47(5):26-34.
    [113]周瑾.核心稳定性在人体运动中的作用[J].北京体育大学学报,2008,31(12):1710-1714.
    [114]刘更代,徐明亮,张明敏.基于独立时空特征空间的人体运动合成[J].计算机学报,2011,34(3):464-472.
    [115]蓝荣伟,孙怀江,连荷清.李斌人体运动捕获数据的向量空间建模与检索[J].计算机辅助设计与图形学学报,2011,23(8):1357-1364.
    [116]张文增,赵冬斌.基于模型的人体运动参数检测[J].生物医学工程学杂志,2005,22(1):147-150.
    [117]夏时洪,魏毅,王兆其.人体运动仿真综述[J].计算机研究与发展,2010,47(8):1354-1361.
    [118]瞿师,吴玲达,于荣欢.人体运动的非线性降维及新运动生成[J].计算机辅助设计与图形学学报,2011,23(9):1533-1538.
    [119]邹北骥,陈妹,彭小宁.适用于单目视频的无标记三维人体运动跟踪[J].计算机辅助设计与图形学学报,2008,20(8):1047-1055.
    [120]徐雷,裴海龙.人体运动目标检测与跟踪方法的研究与实现[J].计算机应用技术,2010,4(135):128-131.
    [121]吴洪森,刘平,董金祥.基于视觉的人体运动识别研究[J].中国人民公安大学学报(自然科学版),2008,4:54-56.
    [122]Mori Hiroshi, Hoshino Jun'ichi. Independent component analysis and synthesis of human motion. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings,2002,4(IV):3564-3567.
    [123]Imai Sayaka, Kanamori Yoshinari. Model-based human motion description in ergonomic database application. Proceedings-International Workshop on Biomedical Data Engineering, BMDE2005,2005.
    [124]李秦川,陈志,陈巧红.S类并联机构无伴随运动的结构条件[J].机械工程学报,2015,15.
    [125]刘辛军,吴超,汪劲松.S类并联机器人机构姿态描述方法[J].机械工程学报,2008,10.
    [126]Yu Jingjun, Hu Yida, Bi Shusheng. KINEMATICS FEATURE ANALYSIS OF A 3-DOF COMPLIANT MECHANISM FOR MICRO MANIPULATION[J]. Chinese Journal of Mechanical Engineering,2004,01.
    [127]Carretero JA, Podhorodeski RP, Nahon MA. Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator[J]. Journal of Mechanical Design,2000.
    [128]Ming Hu, Jia-Shun Shi. The Kinematic Analyses of the 3-DOF Parallel Machine Tools[J]. International Journal of Automation & Computing,2011,01.
    [129]Kin Huat Low. Locomotion and Depth Control of Robotic Fish with Modular Undulating Fins[J]. International Journal of Automation and Computing,2006,04.
    [130]Carlos A, Acosta Calderon, John Q. Gan. An Analysis of the Inverse Kinematics for a 5-DOF Manipulator [J]. International Journal of Automation and Computing,2005,02.
    [131]De Xu, Carlos A, Acosta Calderon. An analysis of the inverse kinematics for a 5-DOF manipulator [J],2005.
    [132]张义民.时域内振动与噪声传递路径系统的路径传递度探索[J].航空学报,2007,04.
    [133]张义民.振动系统随机传递路径响应分析[J].工程力学,2008,01.
    [134]于兰峰,王金诺.塔式起重机动态分析的计算模型[J].机械设计与研究,2006,05.
    [135]宋述芳,吕震宙.基于马尔可夫蒙特卡罗子集模拟的可靠性灵敏度分析方法[J].机械工程学报,2009,04.
    [136]姜伟,陈学东,严天宏.基于矩阵变换的多刚体系统振动分析符号建模[J].机械工程学报,2008,06.
    [137]ARNOLD M, FUCHS A, FUHRER C. Efficient corrector iteration for DAE time integration inmultibody dynamics[J]. Comput.Methods Appl.Mech.Engrg,2006.
    [138]E. Bayo, R. Ledesma. Augmented lagrangian and mass-orthogonal projection methods for constrained multibody dynamics [J].
    [139]姜伟.基于约束拓扑变换的大规模复杂多刚体系统振动分析[D].华中科技大学,2008.
    [140]Eisner Frederic, Kerkeni Naceur, Angue Jean-Claude. Automatic target tracking: application to human motion analysis. Proceedings of SPIE-The International Society for Optical Engineering,1996,2666:189-198.
    [141]Moon Hwan Kim, Jin Bae Park, Young Hoon Joo. Hybrid silhouette extraction method for detecting and tracking the human motion[J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2006,2(LNCS-II):687-695.
    [142]Lo Janzen, Huang Gang, Metaxas Dimitris. Human motion planning based on recursive dynamics and optimal control techniques [J]. Multibody System Dynamics, 2002,8(4):433-458.
    [143]Kolahi A, Hoviattalab M, Rezaeian T. Design of a marker-based human motion tracking system[J]. Biomedical Signal Processing and Control,2007,2(1):59-67.
    [144]Hashimoto Koichi, Kimura Hidenori. PARALLEL ARCHITECTURE FOR RECURSIVE LEAST SQUARE METHOD[J]. Electronics and Communications in Japan, Part I:Communications (English translation of Denshi Tsushin Gakkai Ronbunshi),1987,70(4):1-11.
    [145]Ghosh R, Verma B. Least square method based evolutionary neural learning algorithm. Proceedings of the International Joint Conference on Neural Networks, 2001,4:2596-2601.
    [146]Guo Yongxin, Luo Shaokai, Wang Yong. Influence nonholonomic constrains on variations, symplectic structure and dynamics on mechanical system[J]. Journal of Mathematical Physics,2007,48:082901.
    [147]Liang Lifu, Hu Haichang, Liu Shiquan. Non-contemporaneous variations and Holder's principle[J]. Science in China(G),2003,46(5):450-459.
    [148]Zhao Yueyu, Jin Bo, Xu Wenxi. Equivalence of Chetaev model and Vacco model in ideal nonholonomic system and active realization nonideal nonholonomic system [J]. Joural of Beijing Institute of Technology,2005,14(2):238-243.
    [149]Zhang Hongbin, Chen Lijun, Liu Rongwan. First integrals of the discrete nonconservative and nonholonomic systems[J]. Chinese Physics,2005,14(2):238-243.
    [150]Zhang Hongbin, Chen Lijun, Liu Rongwan. The discrete variational principle in Hamiltonian formalism and first integrals[J]. Chinese Physics,2005,14(6):1063-1068.
    [151]Ma Shanjun, Liu Mingping, Huang Peitian. The forms of three-order Lagrangian equation in relative motion[J]. Chinese Physics,2005,14(2):244-246.
    [152]Ma Shanjun, Ge Weiguo, Huang Peitian. The three order Lagrange's equation for mechanical system of variable mass[J]. Chinese Physics,2005,14(5):879-881.
    [153]Liu Rongwan, Zhang Hongbin, Chen Liqun. Variational principle and dynamical equations of discrete nonconservative holonomic systems[J]. Chinese Physics,2006, 15(2):249-252.
    [154]范宣华,胡绍全.基于有限元法的电动振动台试验仿真研究[J].机械强度,2007,29(4):536-539.
    [155]谭永华,蔡国飙.振动台虚拟试验仿真技术研究[J].机械强度,2010,32(1):030-034.
    [156]刘凤臣,季旭.基于ANSYS的铰链型膨胀节结构强度分析[J].机械设计与制造,2011(2):204-206.